CMR : n3 - n chia hết cho 3
p/s : không cần làm đâu , tui ra hay vậy thui
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt cái cần chứng minh là (*)
+) Với n = 0 thì (*) = 0.1 = 0 chia hết cho 2 => đúng
+) Giả sử (*) luôn đúng với n = k => k(k + 1) chia hết cho 2 thì ta cần chứng minh (*) luôn đúng với k + 1 tức (k + 1)(k + 2) chia hết cho 2
Thật vậy:
(k + 1)(k + 2)
= k(k + 1) + 2(k + 1)
Vì 2 chia hết cho 2 => 2(k + 1) chia hết cho 2 mà k(k + 1) chia hết cho 2 do giả thiết quy nạp
=> (k + 1)(k + 2) chia hết cho 2
=> Phương pháp quy nạp được chứng minh
Vậy n(n + 1) chia hết cho 2 với mọi n thuộc N
n.(n+1)là tich 2 stn liên tiếp suy ra tich đó là 1 số chẵn luôn chia hết cho 2
linh tinh
Em mong onlinemath se xoa cau nay di a
theanh MÌNH NGHĨ BẠN LÀ NGƯỜI LINH TINH NHẤT Ở ĐÂY ĐẤY