Cho hình chữ nhật ABCD có AB = 8 cm, BC = 6 cm. Lấy E trên cạnh AD sao cho AE = 4 cm. Nối B với E cắt CD kéo dài tại F. Tính diện tích hình tam giác CEF.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chiều dài hình chữ nhật ABCD là:
60 : 2 : (3 + 2) x 3 = 18 (cm)
Chiều rộng hình chữ nhật ABCD là
60 : 2 : (3 + 2) x 2 = 12 (cm)
Diện tích hình chữ nhật ABCD là:
18 x 12 = 216 (cm\(^2\))
b) Diện tích tam giác ABE là:
18 x 12 : 2 = 108 (cm\(^2\))
Diện tích tam giác ABM là:
18 x (12 : 3 x 2) : 2 = 72 (cm\(^2\))
Vậy diện tích tam giác MBE là:
108 - 72 = 36 (cm\(^2\))
Diện tích tam giác MCD là:
18 x (12 - 8) : 2 = 36 (cm\(^2\))
Vậy diện tích tam giác MBE bằng diện tích tam giác MC
Còn hình vẽ thì mình không biết vẽ cách nào nữa
a, Nửa chu vi của hình chữ nhật là :
52 : 2 = 26 [cm]
Chiều dài của hình chữ nhật dài số cm là :
[26 + 10] : 2 = 18 [cm]
Chiều rộng của hình chữ nhật dài số cm là :
26 - 8 = 18 [cm]
Diện tích của hình chữ nhật là :
18 x 8 = 144 [cm2]
b,Diện tích hình chữ nhật ABC là :
18 x 8 : 2 = 72 [cm2]
Độ dài đoạn thẳng MB là :
18 : 3 = 6 [cm]
Ta thấy rằng hai hình tam giác ABC và MBC có chung chiêu cao là CB và cạnh đáy MB = \(\frac{1}{3}\)AB nên diện tích hình tam giác ABC gấp 3 lần diện tích hình tam giác MBC.
Vậy diện tích hình tam giác MBC là :
72 x \(\frac{1}{3}\)= 24 [cm2]
Ta vẽ một đoạn thẳng MO vuông góc với đoạn thẳng CD tạo thành môt hình chữ nhật OMBC .
Vậy diện tích hình chữ nhật OMBC là :
8 x 6 = 48 [cm2]
Ta có : OMBC = MBC x 2 [xin các bạn hiều cái này là diện tích ]
= MC x BN : 2 x 2
= MC x BN
=> 48 = MC x BN
=> 48 = 2 x BN x BN
=> 24 =BN2
Vậy BN là căn bậc 2 của 24 nên MC bằng căn bậc 2 của 24 nhân 2. [hình như đề bài sai ấy]
c,Độ dài đoạn thẳng AM là :
18 - 6 = 12 [cm]
Diện tích hình thang AMCD là :
[12 + 18] x 8 : 2 = 120 [cm2]
Diện tích hình tam giác EAM là :
216 - 120 = 96 [cm2]
Độ dài đoạn thẳng AE là :
96 x 2 : 12 = 16 [cm]
Vậy độ dài đoạn thẳng AE là 16 cm .
phần b của cậu sai sai vì lớp 5 đã học căn bậc 2 rồi à
a, Ta có ∆ABE = ∆ADF(g.c.g) => AE = AF
b, Ta có: ∆AKF ~ ∆CAF ( F ^ chung và F A K ^ = F C A ^ = 45 0 )
=> A F H F = C F A F => A F 2 = K F . C F
c, S A E F = 93 2 c m 2
d, Ta có: AE.AJ=AF.AJ=AD.FJ
=> A E . A J F J = AD không đổi