K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔDEF vuông tại D có 

AB/DE=AC/DF

Do đó: ΔABC\(\sim\)ΔDEF

b: \(\dfrac{C_{ABC}}{C_{DEF}}=\dfrac{AB}{DE}=\dfrac{2}{3}\)

4 tháng 3 2021

Xét \(\Delta ABC\)vuông tại A theo định lí Pitago ta có : \(AB^2+AC^2=BC^2\Rightarrow6^2+8^2=BC^2\)

\(\Rightarrow BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét \(\Delta DEF\)vuông tại D theo định lí Pitago ta có :\(DE^2+DF^2=EF^2\)

=> \(DF^2=EF^2-DE^2=15^2-9^2=144\)

=> \(DF=\sqrt{144}=12\left(cm\right)\)

Để hai tam giác trên đồng dạng với nhau , trước hết tính tỉ lệ tương ứng với 3 cạnh

Xét tam giác ABC và tam giác DEF ta có :

\(\frac{AB}{DE}=\frac{6}{9}=\frac{2}{3}\)

\(\frac{BC}{EF}=\frac{10}{15}=\frac{2}{3}\)

\(\frac{AC}{DF}=\frac{8}{12}=\frac{2}{3}\)

=> \(\frac{AB}{DE}=\frac{BC}{EF}=\frac{AC}{DF}\left(=\frac{2}{3}\right)\)

=> Tam giác ABC đồng dạng tam giác DEF

Nếu bạn muốn làm tam giác DEF đồng dạng với tam giác ABC cũng được

4 tháng 3 2021

ko b oi

a: EP/FP=DE/DF=3/4

b: Xet ΔFHP vuông tại H và ΔFDE vuông tại D có

góc HFP chung

=>ΔFHP đồng dạng vơi ΔFDE

c: ΔFHP đồng dạng với ΔFDE

=>HP/DE=FP/FE=4/7

=>HP/9=4/7

=>HP=36/7(cm)

27 tháng 3 2023

a: EP/FP=DE/DF=3/4

b: Xet ΔFHP vuông tại H và ΔFDE vuông tại D có

góc HFP chung

=>ΔFHP đồng dạng vơi ΔFDE

c: ΔFHP đồng dạng với ΔFDE

=>HP/DE=FP/FE=4/7

=>HP/9=4/7

=>HP=36/7(cm)

a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

AD là phân giác

=>BD/CD=AB/AC=3/4

=>4DB=3CD

mà DB+DC=15

nên DB=45/7cm; DC=60/7cm

b: Xet ΔABC vuông tại A và ΔEDC vuông tại E có

góc C chung

=>ΔABC đồng dạng với ΔEDC

14 tháng 1 2018

a) Sai;

b) Sai;

c) Đúng;

d) Đúng.

a: XétΔABC vuông tại A và ΔHBA vuông tại H có 

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: \(\dfrac{S_{ABC}}{S_{HBA}}=\dfrac{25}{9}\)

nên \(S_{HBA}=24:\dfrac{25}{9}=24\cdot\dfrac{9}{25}=8.64\left(cm^2\right)\)

9 tháng 4 2022

cảm ơn nha