Phân tích đa thức sau thành nhân tử:
x^2/4+2xy+4y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4-5x^2y^2+4y^4\)
\(=\left(x^2\right)^2-2x^22y^2+\left(2y^2\right)^2-x^2y^2\)
\(=\left(x^2-2y^2\right)^2-\left(xy\right)^2\)
\(=\left(x^2-2y^2-xy\right)\left(x^2-2y^2+xy\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+2x\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+2x\right)\)
\(x^2-3y^2-8z^2+2xy-10yz+2xz\)
\(=x^2-3y^2-8z^2+3xy-xy-4yz-6yz+4xz-2xz\)
\(=\left(x^2+3xy+4xz\right)+\left(-xy-3y^2-4yz\right)+\left(-2xz-6yz-8z^2\right)\)
\(=x\left(x+3y+4z\right)-y\left(x+3y+4z\right)-2z\left(x+3y+4z\right)\)
\(=\left(x+3y+4z\right)\left(x-y-2z\right)\)
x2 + 4x – 2xy – 4y + y2 = (x2-2xy+ y2) + (4x – 4y) → bạn Việt dùng phương pháp nhóm hạng tử
= (x - y)2 + 4(x – y) → bạn Việt dùng phương pháp dùng hằng đẳng thức và đặt nhân tử chung
= (x – y)(x – y + 4) → bạn Việt dùng phương pháp đặt nhân tử chung
\(x^2+7x+12=x\left(x+3\right)+4\left(x+3\right)=\left(x+3\right)\left(x+4\right)\)
\(=x^2+3x+4x+12\)
\(=x\left(x+3\right)+4\left(x+3\right)\)
\(=\left(x+3\right)\left(x+4\right)\)
x^4+64
=(x^2)^2+8^2+2.x^2.8-2.x^2.8
=(x^2+8)^2-16x^2
=(x^2+8-4x)(x^2+8+4x)
\(\dfrac{1}{4}x^2+2xy+4y^2=\left(\dfrac{1}{2}x+2y\right)^2\)