Câu 2 So sánh
a) \(9^{12}\)và \(27^7\)
b) \(333^{444}\)và \(444^{333}\)
c) \(\frac{17^{2001}+1}{17^{2002}+1}\)và \(\frac{17^{2001}+1}{17^{2001}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
So sánh A và B biết A = \(\frac{17^{2001}+1}{17^{2002}+1}\); B = \(\frac{17^{2000}+1}{17^{2001}+1}\)
Ta có: \(17A=17.\left(\frac{17^{2001}+1}{17^{2002}+1}\right)=\frac{17^{2002}+17}{17^{2002}+1}=\frac{17^{2002}+1+16}{17^{2002}+1}=1+\frac{16}{17^{2002}+1}\)
\(17B=17.\left(\frac{17^{2000}+1}{17^{2001}+1}\right)=\frac{17^{2001}+17}{17^{2001}+1}=\frac{17^{2001}+1+16}{17^{2001}+1}=1+\frac{16}{17^{2001}+1}\)
Vì 1 = 1 và 16 = 16 nên so sánh mẫu:
172002 + 1 > 172001 + 1
=> \(1+\frac{16}{17^{2002}+1}<1+\frac{16}{17^{2001}+1}\)
=> 17A < 17B
=> A < B.
Ta có:\(17^{2001}>17^{2000},1=1\) Còn \(\frac{1}{17^{2002}},\frac{1}{17^{2001}}\) thì ko quan trọng chúng đều nhỏ hơn 1
Nên A>B
a) \(\frac{3}{-4}=\frac{-3}{4};\frac{-1}{-4}=\frac{1}{4}\)
Vì - 3 < 1 nên \(\frac{-3}{4}< \frac{1}{4}\)
hay \(\frac{3}{-4}< \frac{-1}{-4}\)
Quy đồng mẫu ta được:
15/17=15.27/17.27=405/459
25/27=25.17/27.27=425/459
⇒405/459<425/459⇒15/17<25/27
\(333^{444}=\left(3.111\right)^{444}=3^{444}.111^{444}=\left(3^4\right)^{111}.111^{444}=81^{111}.111^{444}\)
\(444^{333}=\left(4.111\right)^{333}=4^{333}.111^{333}=\left(4^3\right)^{111}.111^{333}=64^{111}.111^{333}\)
Vì 81 > 64 nên 81111 > 64111 và 111444 > 111333
=> 81111 . 111444 > 64111 . 111333
Vậy 333444 > 444333.
444^ 333 lớn hơn , bạn nào vào mục câu hỏi hay tick mk với , mk trả lại 10 tick vì mi có khá nhiều nick đó !!!
Ta có: 333444=333111.4=3334mũ 111=12296370321111
444333=444111.3=4443mũ 111=87528384111
Mà: 12296370321>87528384 và 111=111.
=>333444>444333.
Tk phát nhé
a)\(9^{12}=\left(3^2\right)^{12}=3^{24}\)
\(27^7=\left(3^3\right)^7=3^{21}\)
\(\Rightarrow9^{12}>27^7\)
a) bạn Mạnh làm rồi và đúng
b) Ta có : \(333^{444}=\left(333^4\right)^{111}=\left[\left(3.111\right)^4\right]^{111}=\left[\left(3^4.111^4\right)\right]^{111}=\left(84.111^4\right)^{111}\)
\(444^{333}=\left(444^3\right)^{111}=\left[\left(4.111\right)^3\right]^{111}=\left[\left(4^3.111^3\right)\right]^{111}=\left(64.111^3\right)^{111}\)
Ta thấy (84.1114)111 > ( 64.1113)111 => 333444 > 444333
Vậy...
c) Vì \(17^{2002}+1>17^{2001}+1\)
\(\Rightarrow\frac{17^{2001}+1}{17^{2002}+1}< \frac{17^{2001}+1}{17^{2001}+1}\)