K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2019

\(210-\left(x+31\right)=-29\)

\(\Rightarrow\left(x+31\right)=210-\left(-29\right)\)

\(\Rightarrow x+31=239\)

\(\Rightarrow x=239-31=208\)

\(-\frac{5}{2}< \frac{3}{x}< \frac{2}{3}\)

Các số nguyên x thỏa mãn là: x \(\in\left\{5;6;......\right\}\)

25 tháng 7 2020

Ta có : 2x + xy - 3y = 18

=> x(y + 2) - 3y = 18

=> x(y + 2) - 3y - 6 = 18 - 6

=> x(y + 2) - 3(x + 2) = 12

=> (x - 3)(y + 2) = 12

Vì \(x;y\inℤ\Rightarrow\hept{\begin{cases}x-3\inℤ\\y+2\inℤ\end{cases}}\)

Lại có : 12 = 1.12 = 3.4 = 2.6 = (-1).(-12) = (-3).(-4) = (-2).(-6) 

Lập bảng xét 12 trường hợp

x - 3112-1-1234-3-426-2-6
y + 2121-12-143-4-362-6-2
x4152-9670-1591-3
y10-1-14-321-6-540-8-4

Vậy các cặp số (x;y) nguyên thỏa mãn là : (4 ; 10) ; (15 ; - 1) ; (2 ; -14) ; (-9 ; -3) ; (6 ; 2) ; (7 ; 1) ; (0 ; -6) ; (-1 ' 5) ; (5 ; 4) ; (9 ; 0) ;

(1 ; -8) ; (-3 ; -4)

b) \(\left(x^2-5\right)\left(x^2-25\right)< 0\)

TH1 : \(\hept{\begin{cases}x^2-5>0\\x^2-25< 0\end{cases}\Rightarrow\hept{\begin{cases}x^2>5\\x^2< 25\end{cases}}\Rightarrow5< x^2< 25\Rightarrow x^2\in\left\{9;16\right\}}\)(vì x là số nguyên)

=> \(x\in\left\{\pm3;\pm4\right\}\)

TH2 : \(\hept{\begin{cases}x^2-5< 0\\x^2-25>0\end{cases}}\Rightarrow\hept{\begin{cases}x^2< 5\\x^2>25\end{cases}}\Rightarrow x\in\varnothing\)

Vậy \(x\in\left\{\pm3;\pm4\right\}\)

25 tháng 7 2020

2x + xy - 3y = 18

<=> 2x + xy - 6 - 3y = 12

<=> ( 2x + xy ) - ( 6 + 3y ) = 12

<=> x( 2 + y ) - 3( 2 + y ) = 12

<=> ( x - 3 )( 2 + y ) = 12 

Lập bảng :

x-31-12-23-34-46-612-12
x4251607-19-315-9
2+y12-126-64-43-32-21-1
y10-144-82-61-50-4-1-3

Vậy ta có 12 cặp ( x ; y ) thỏa mãn 

( 4 ; 10 ) , ( 2 ; -14 ) , ( 5 ; 4 ) , ( 1 ; -8 ) , ( 6 ; 2 ) , ( 0 ; -6 ) , ( 7 ; 1 )  , ( -1 ; -5 ) , ( 9 ; 0 ) , ( -3 ; -4 ) , ( 15 ; -1 ) , ( -9 ; -3 ) 

a) Ta có: (x-3)(y+2)=5

nên (x-3) và (y+2) là ước của 5

\(\Leftrightarrow x-3;y+2\in\left\{1;-5;-1;5\right\}\)

Trường hợp 1: 

\(\left\{{}\begin{matrix}x-3=1\\y+2=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=3\end{matrix}\right.\)

Trường hợp 2: 

\(\left\{{}\begin{matrix}x-3=5\\y+2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=-1\end{matrix}\right.\)

Trường hợp 3: 

\(\left\{{}\begin{matrix}x-3=-1\\y+2=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-7\end{matrix}\right.\)

Trường hợp 4: 

\(\left\{{}\begin{matrix}x-3=-5\\y+2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)

Vậy: \(\left(x,y\right)\in\left\{\left(4;3\right);\left(8;-1\right);\left(2;-7\right);\left(-2;-3\right)\right\}\)

b) Ta có: (x-2)(y+1)=5

nên x-2 và y+1 là các ước của 5

\(\Leftrightarrow x-2;y+1\in\left\{1;-1;5;-5\right\}\)

Trường hợp 1: 

\(\left\{{}\begin{matrix}x-2=1\\y+1=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

Trường hợp 2: 

\(\left\{{}\begin{matrix}x-2=5\\y+1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=0\end{matrix}\right.\)

Trường hợp 3: 

\(\left\{{}\begin{matrix}x-2=-1\\y+1=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-6\end{matrix}\right.\)

Trường hợp 4: 

\(\left\{{}\begin{matrix}x-2=-5\\y+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)

Vậy: \(\left(x,y\right)\in\left\{\left(3;4\right);\left(7;0\right);\left(1;-6\right);\left(-3;-2\right)\right\}\)

Giải:

a) Vì (x-5) là Ư(6)={-6;-3;-2;-1;1;2;3;6}

Ta có bảng giá trị:

x-5=-6 ➜x=-1

x-5=-3 ➜x=2

x-5=-2 ➜x=3

x-5=-1 ➜x=4

x-5=1 ➜x=6

x-5=2 ➜x=7

x-5=3 ➜x=8

x-5=6 ➜x=11

Vậy x ∈ {-1;2;3;4;5;6;7;8;11}

b) Vì (x-1) là Ư(15)={-15;-5;-3;-1;1;3;5;15}

Ta có bảng giá trị:

x-1=-15 ➜x=-14

x-1=-5 ➜x=-4

x-1=-3 ➜x=-2

x-1=-1 ➜x=0

x-1=1 ➜x=2

x-1=3 ➜x=4

x-1=5 ➜x=6

x-1=15 ➜x=16

Vậy x ∈ {-14;-4;-2;0;2;4;6;16} 

c) x+6 ⋮ x+1

⇒x+1+5 ⋮ x+1

⇒5 ⋮ x+1

⇒x+1 ∈ Ư(5)={-5;-1;1;5}

Ta có bảng giá trị:

x+1=-5 ➜x=-6

x+1=-1 ➜x=-2

x+1=1 ➜x=0

x+1=5 ➜x=4

Vậy x ∈ {-6;-2;0;4}

Chúc bạn học tốt!

a) Ta có (x-5)là Ư(6)

          \(\Rightarrow\)(x-5)\(\in\)\(\left\{-1;-2;-3;-6;1;2;3;6\right\}\)

         \(\Rightarrow\)x\(\in\)\(\left\{4;3;2;-1;6;7;8;11\right\}\)

Vậyx\(\in\)\(\left\{4;3;2;-1;6;7;8;11\right\}\)

b)Ta có (x-1) là Ư(15)

             \(\Rightarrow\left(x-1\right)\in\left\{-15;-5;-3;-1;1;3;5;15\right\}\)

             \(\Rightarrow\)x\(\in\left\{-14;-4;-2;0;2;4;6;16\right\}\)

Vậy x\(\in\left\{-14;-4;-2;0;2;4;6;16\right\}\)

c)Ta có (x+6) \(⋮\) (x+1)

  =(x+1)+5\(⋮\) (x+1)

Mà (x+1)\(⋮\) (x+1) nên để (x+6) \(⋮\) (x+1) thì 5 \(⋮\) (x+1)

Nên (x+1)\(\in\)Ư(5)

 \(\Rightarrow\)x+1\(\in\)\(\left\{5;1;-1;-5\right\}\)

\(\Rightarrow x\in\left\{4;0;-2;-6\right\}\)

 

26 tháng 7 2017

2.(5+3x)+x=31

10+6x+x=31

10+7x=31

  7x=  31-10

7x  =21

x=21:7

x=3

19 tháng 3 2020

b) (3x-7)+2.(5-2x)+5x=19 

=> 3x - 7 + 10 - 4x + 5x = 19

=> 4x + 3 = 19

=> 4x = 16

=> x = 4

vậy_

25 tháng 1 2017

k minh minh giai cho