Tìm số chính phương có 4 chữ số abcd, biết số đó chia hết cho 9 và d là số nguyên tố.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm X => 1000<X<9999, đặt X= 147*A =>A không nhỏ hơn 8 và bé hơn hoặc bằng 67, tận cùng của X là 9 nên tận cùng của A phải là 7 như vậy A chỉ có thể 17,27,37,47,57,67 , mặt khác 147=3*7*7 suy ra A=3*k^2 ( k số twj nhiên), theo trên chỉ có hai số 27 và 57 chia hết 3 nên A chỉ có thể là 27, hoặc 57, thấy rằng chỉ có A= 27 thỏa màn, vậy X= 147*24 = 3969 = 63^2.
\(a,\)Số cần tìm là :
\(1:\frac{41}{20}=\frac{20}{41}\)
Vậy.................
b,Ta có :abcd \(⋮9\)và a+b+c+d chia hết cho 9
\(\Rightarrow1000a+100b+10c+d⋮9\)
\(\Rightarrow999a+99b+9c+d+a+b+c⋮9\)
\(=9\left(111a+11b+c\right)+a+b+c+d⋮9\)
sai đề rồi bạn ơi
mình nhầm xin lỗi bạn