Cho S = 7^1+7^3+7^5+...+7^99 chứng minh S chia hết cho 35 cho S =2^1+2^2+2^3+....+2^90 chứng minh S chia hết cho 21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) (5+54)+(52+55)+...........+(52003+52006)= 5(1+53)+52(1+53)+..............+52003(1+53)
= (5+52+..........+52003).126 ->S chia hết cho 126
2, 7+73+................+71997+71999 = 7(1+72)+..............+71997(1+72)
= (7+...............+71997).50-> chia hết cho 5
= 7(1+72+.......+71998) -> chia hết cho 7
-> chia hết cho 35
S = \(7+7^2+.............+7^{2016}\)
\(7S=7^2+7^3+...........+7^{2017}\)
\(7S-S=\left(7^2-7^2\right)+\left(7^3-7^3\right)+...........+7^{2017}-7\)
\(S=\frac{7^{2017}-7}{6}\)
b) \(S=\left(7+7^2+7^3+7^4\right)+.............+\left(7^{2013}+7^{2014}+7^{2015}+7^{2016}\right)\)
\(S=35.2^4.5+35.2^4.5.7^4+.........+35.2^4.5.7^{2012}\)
\(S=35.2^4.5.\left(1+7^4+7^8+............+7^{2012}\right)\)
Vậy chia hết cho 35
a)7S=72+73+74+...+72016+72017
7S-S=72017-7
S=(72017-7):6
mik cx ko bt câu này
mik cx dg định đăng câu này
hok tốt