K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2019

Lấy A - B ta được

\(A-B=\frac{-2016}{10^{2016}}-\frac{-2017}{10^{2016}}+\frac{-2017}{10^{2017}}+\frac{2016}{10^{2017}}\)

              \(=\frac{1}{10^{2016}}-\frac{1}{10^{2017}}>0\)

Nên A > B

11 tháng 4 2018

dễ mà bạn

A=10x10+10/ 10x10x10+10

A=110/1010

a=11/101

b=10x10-10/10x10x10-10

b=90/990

b=11/110

vậy a=11/101

       b=90/990

bn tự so sánh nhé ^-^

mik mỏi tay quá ko đánh đc nữa bọn mik bằng tuổi đó

câu này mik học trên lớp rùi

15 tháng 3 2018

Anh hiền àaaaaaaaaaaaaaaaaaaaaaaaaa

15 tháng 3 2018

Tường đây

9 tháng 5 2018

\(+)A=\frac{10^{2016}+2018}{10^{2017}+2018}\)

\(10A=\frac{10^{2017}+20180}{10^{2017}+2018}=1+\frac{18162}{10^{2017}+2018}\left(1\right)\)

\(+)10B=\frac{10^{2018}+20180}{10^{2018}+2018}=1+\frac{18162}{10^{2018}+2018}\left(2\right)\)

Từ (1),(2)=> \(\frac{18162}{10^{2017}+2018} >\frac{18162}{10^{2018}+2018}\)

=> 10A>10B

=>A>B

9 tháng 5 2018

k đúng cho mình đi, mình giải cho.

24 tháng 4 2017

a/ Ta có

\(200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)\)

\(=1+2\left(1-\frac{1}{3}\right)+2\left(1-\frac{1}{4}\right)+...+2\left(1-\frac{1}{100}\right)\)

\(=1+2\left(\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\right)\)

\(=2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\)

Thế lại bài toán ta được:

\(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}\)

\(=\frac{2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}=2\)

24 tháng 4 2017

b/ Ta có: 

A - B\(=\frac{-21}{10^{2016}}+\frac{12}{10^{2016}}+\frac{21}{10^{2017}}-\frac{12}{10^{2017}}\)

\(=\frac{9}{10^{2017}}-\frac{9}{10^{2016}}< 0\)

Vậy A < B

Nhân cả hai tử của \(A\)và \(B\)với 2 , ta được :

\(10A=10.\left(\frac{10^{2016}+1}{10^{2017}+1}\right)=\frac{10^{2017}+1+9}{10^{2017}+1}=1+\frac{9}{2^{2017}+1}\)

\(10B=10\left(\frac{10^{2017}+1}{10^{2018}+1}\right)=\frac{10^{2018}+10}{10^{2018}+1}=\frac{10^{2018}+1+9}{10^{2018}}=1+\frac{9}{10^{2018}+1}\)

Vì \(1=1;9=9\)

\(\Rightarrow\)Ta so sánh mẫu , ta có:

\(10^{2017}< 10^{2018}\)

\(\Rightarrow10^{2017}+1< 10^{2018}+1\)

\(\Rightarrow1+\frac{9}{10^{2017}+1}>1+\frac{9}{10^{2018}+1}\)

\(\Rightarrow10A>10B\)

Hay \(A>B\)

7 tháng 1 2018

Ta có :  \(A=\frac{10^{2016}+1}{10^{2017}+1}\) 

Suy ra  \(10A=\frac{10^{2017}+10}{10^{2017}+1}\) 

Suy ra  \(10A=1+\frac{9}{10^{2017}+1}\) 

Ta lại có : \(B=\frac{10^{2017}+1}{10^{2018}+1}\) 

Suy ra : \(10B=\frac{10^{2018}+10}{10^{2018}+1}\) 

Suy ra : \(10B=1+\frac{9}{10^{2018}+1}\) 

Vì  \(\frac{9}{10^{2017}+1}>\frac{9}{10^{2018}+1}\) 

Nên  \(1+\frac{9}{10^{2017}+1}>1+\frac{9}{10^{2018}+1}\) 

Suy ra \(10A>10B\) 

Suy ra \(A>B\)

7 tháng 1 2018

\(B< \frac{10^{2017}+1+9}{10^{2018}+1+9}=\frac{10^{2017}+10}{10^{2018}+10}=\frac{10\left(10^{2016}+1\right)}{10\left(10^{2017}+1\right)}=\frac{10^{2016}+1}{10^{2017}+1}=A\)

vậy A > B