K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2019

EM LÀ CON GÁI HAY TRAI VẬY 

19 tháng 4 2019

Có: \(x+y+z⋮6\)

\(\Rightarrow x+y+z=6k\left(k\in Z\right)\)

\(\Rightarrow\hept{\begin{cases}x+y=6k-z\\y+z=6k-x\\z+x=6k-y\end{cases}}\)

\(M=\left(x+y\right)\left(y+z\right)\left(z+x\right)-2xyz\)

\(\Leftrightarrow M=x^2y+y^2z+z^2y+xy^2+xz^2+x^2z-2xyz-2xyz\)

\(\Leftrightarrow M=xy\left(x+y\right)+yz\left(y+z\right)+xz\left(z+x\right)\)

\(\Leftrightarrow M=xy\left(6k-z\right)+yz\left(6k-x\right)+xz\left(6k-y\right)\)

\(\Leftrightarrow M=6k\left(xy+yz+zx\right)-3xyz\)

Ta có:\(x+y+z=6k\left(k\in Z\right)\)

\(\Rightarrow\)x+y+z là số chẵn.

\(\Rightarrow\)trong 3 số x;y;z có ít nhất 1 số chẵn

\(\Rightarrow xyz⋮2\)

\(\Rightarrow3xyz⋮6\)

\(M=6k\left(xy+yz+zx\right)-3xyz⋮6\)( vì \(6k\left(xy+yz+zx\right)⋮6\))

đpcm

25 tháng 9 2016

46452007

21 tháng 2 2021

Ta có:\(M=\left(x+y\right)\left(x+z\right)\left(y+z\right)-2xyz\)

\(=\left(x^2+xz+xy+yz\right)\left(y+z\right)-2xyz\)

\(=x^2y+x^2z+xyz+xz^2+xy^2+xyz+y^2z+yz^2-2xyz\)

\(=x^2y+x^2z+xz^2+xy^2+y^2z+yz^2\)

\(=\left(x^2y+xy^2+xyz\right)+\left(y^2z+yz^2+xyz\right)+\left(z^2x+zx^2+xyz\right)-3xyz\)

\(=xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+y+z\right)-3xyz\)

\(=\left(x+y+z\right)\left(xy+yz+xz\right)-3xyz\)

Vì \(\left(x+y+z\right)\left(xy+yz+xz\right)⋮6\)

Giả sử:Trg 3 số x,y,z không tồn tại số nào chẵn

=> x+y+z lẻ  mà 1 số lẻ không chia hết cho 6 nên điều g/s sai

=> tồn tại ít nất 1 trong 3 số x,y,z chẵn

Giả sử: x chẵn

=> x chia hết cho 2 => 3xyz chia hết cho 6

=> đpcm

3 tháng 4 2018

- Nếu x,y,z khác số dư khi chia cho 3

+ Nếu có 2 số chia hết cho 3.Số còn lại không chia hết cho 3.Giả sử x, y đều chia hết cho 3, z không chia hết cho 3

=> x + y + z không chia hết cho 3. Do x, y đều chia hết cho 3 nên (x−y)⋮3

=> (x − y)(y − z)(z − x)⋮3 (Vô lý do (x − y)(y − z)(z − x) = x + y + z )

+ Nếu có 1 số chia hết cho 3, 2 số còn lại khác số chia khi chia cho 3, không chia hết cho 3.Tương tự dẫn đến vô lý.

Vậy cả 3 số có cùng số dư khi chia cho 3

=>(x − y)⋮3;(y − z)⋮3;(z − x)⋮3

=>(x − y)(y − z)(z − x)⋮27

=> x + y + z⋮27

19 tháng 12 2017

Áp dụng tính chất : 

Nếu a+b+c = 0 hoặc a =b=c thì a^3 + b^3 + c^3 = 3abc 

Sử dụng tính chất trên ta được : 

( x - y )^3 + ( y -z )^3 + ( z - x )^3 = 3( x -y )(y -z )( z -x ) 

♥,Nếu x ,y, z có cùng số dư khi chia cho 3 => 

x-y , y- z , z - x :/ 3 ( :/ là kí hiệu chia hết ) 

=> ( x -y )(y -z )( z -x ) :/ 27 => 3( x -y )(y -z )( z -x ) :/ 81 

♥,G/S trong ba số x,y,z ko có số nào có cùng số dư khi chia hết cho 3 

=> ( x -y )(y -z )( z -x ) ko chia hết cho 3 

Từ G/S => x,y,z chia 3 sẽ có 3 số dư là 0,1,2 

=> x+y +z :/3 => ( x -y )(y -z )( z -x ) :/3 ( Vô lý ) 

♥,Vậy trong ba số x,y,z có hai số có cùng số dư khi chia cho 3 . G/S đó là x,y 

=> ( x -y )(y -z )( z -x ) :/3 => x +y +z :/3 

1,Nếu x,y :/ 3 => z :/3 => ( x -y )(y -z )( z -x ) :/27 => 3( x -y )(y -z )( z -x ) :/ 81 

2,Nếu x,y chia 3 dư 1 , x+y+z :/3 => z chia 3 dư 1 => 3( x -y )(y -z )( z -x ) :/ 81 

3,Nếu x,y chia 3 dư 2 , x+y + z :/3 => z chia 3 dư 2 => 3( x -y )(y -z )( z -x ) :/ 81 

Tóm lại 3( x -y )(y -z )( z -x ) :/ 81 hay M=(x-y)^3+(y-z)^3+(z-x)^3 :/ 81

12 tháng 11 2019

Ta có: \(x^4;y^4;z^4\)chia cho 4 dư 0 hoặc dư 1.

Mà \(x^4+y^4+z^4⋮4\)

\(\Rightarrow x^4;y^4;z^4⋮4\)

\(\Rightarrow x;y;z⋮2\)

Đề bài sai. \(x;y;z⋮2\)mới đúng

12 tháng 11 2019

Đề đúng đó bn. Câu này trong đề thi hsg tỉnh toán 9 hải phòng 2011-2012 mà :) thay các giá trị x,y,z = 4k đều thỏa mãn đề mà