cho đa thức f(x) = ax3 + bx2 + cx + d với a nguyên dương .biết rằng f(5) - f(4)= 2012. Chứng minh rằng f(7) - f(2) là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left\{{}\begin{matrix}f\left(5\right)=125a+25b+5c+2021\\f\left(4\right)=64a+16b+4c+2021\end{matrix}\right.\)
\(f\left(5\right)-f\left(4\right)=2020\) \(\Rightarrow61a+9b+c=2020\)
Ta có: \(\left\{{}\begin{matrix}f\left(7\right)=343a+49b+7b+2021\\f\left(2\right)=8a+4b+2c+2021\end{matrix}\right.\)
\(\Rightarrow f\left(7\right)-f\left(2\right)=335a+45b+5b=5\left(61a+9b+c\right)=5.2020\)
\(\Rightarrow f\left(7\right)-f\left(2\right)\) chia hết cho 5 nên nó là hợp số.
Đặt \(g\left(x\right)=f\left(x\right)-10\) (bậc 4)
\(\Leftrightarrow\left\{{}\begin{matrix}g\left(1\right)=0\\g\left(2\right)=0\\g\left(3\right)=0\end{matrix}\right.\Leftrightarrow g\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right)\) (m là hằng số)
\(\Leftrightarrow f\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right)-10\\ \Leftrightarrow f\left(9\right)=8\cdot7\cdot6\left(9-m\right)-10=336\left(9-m\right)-10\\ f\left(-5\right)=\left(-6\right)\left(-7\right)\left(-8\right)\left(-5-m\right)-10=336\left(m+5\right)-10\)
Vậy \(A=336\left(9-m\right)+336\left(m+5\right)-20=4684\)
Chúc bạn hok tốt <3
Bài 1:
1.
$6x^3-2x^2=0$
$2x^2(3x-1)=0$
$\Rightarrow 2x^2=0$ hoặc $3x-1=0$
$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức
2.
$|3x+7|\geq 0$
$|2x^2-2|\geq 0$
Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$
$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý)
Vậy đa thức vô nghiệm.
Bài 2:
1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$
Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$
Do đó đa thức vô nghiệm
2.
$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$
$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$
Vậy đa thức khác 0 với mọi $x$
Do đó đa thức không có nghiệm.
Ta có:
\(f\left(5\right)=125a+25b+5c+d\)
\(f\left(4\right)=64a+16b+4c+d\)
\(f\left(7\right)=343a+49b+7c+d\)
\(f\left(2\right)=8a+4b+2c+d\)
Xét:
\(f\left(5\right)-f\left(4\right)=125a+25b+5c+d-64a-16b-4c-d\)
\(=61a+9b+c=2019\)
Khi đó:
\(f\left(7\right)-f\left(2\right)=343a+49b+7c+d-8a-4b-2c-d\)
\(=335a+45b+5c=5\left(61a+9b+c\right)+30=5\cdot2019+30⋮5\)
Vậy ta có đpcm
Lời giải:
Ta có:
\(f(5)-f(4)=2012\)
\(\Leftrightarrow (a.5^3+b.5^2+c.5+d)-(a.4^3+b.4^2+c.4+d)=2012\)
\(\Leftrightarrow 61a+9b+c=2012\)
Do đó:
\(f(7)-f(2)=(a.7^3+b.7^2+c.7+d)-(a.2^3+b.2^2+c.2+d)\)
\(=335a+45b+5c=30a+5(61a+9b+c)\)
\(=30a+5.2012=5(6a+2012)\vdots 5\)
Mà \(f(7)-f(2)=30a+5.2012>5, \forall a\in\mathbb{Z}^+\). Do đó $f(7)-f(2)$ là hợp số (đpcm)
Giải:
Ta có: \(f\left(5\right)-f\left(4\right)=2012\)
\(\Leftrightarrow\left(125a+25b+5c+d\right)\)\(-\left(64a+16b+4c+d\right)=2012\)
\(\Leftrightarrow61a+9b+c=2012\)
Lại có: \(f\left(7\right)-f\left(2\right)\)
\(=\left(343a+49b+7c+d\right)-\) \(\left(8a+4b+2c+d\right)\)
\(=335a+45b+5c=305a+45b+5c+30a\)
\(=5\left(61a+9b+c\right)+30a=2012+30a\)\(=2\left(1006+15a\right)\)
Do \(a\) là số nguyên nên ta được: \(2\left(1006+15a\right)⋮2\)
Vậy \(f\left(7\right)-f\left(2\right)\) là hợp số (Đpcm)
f (5)-f(4)=(125a+25b+5c+d)-(64a+19b+4c+d) =61a+9b+c=2012
f(7)-f(2)=(343a+49b+7c+d)-(8a+4b+2c+d)=335a+45b+5c=5(61a+9b+c)+30
=5*(2012+6) chia hết cho 5 mà 5*(2012+6)>5 nên là hợp sô
\(f\left(5\right)-f\left(4\right)=\left(125a+25b+5c+d\right)-\left(64a+16b+4c+d\right)=61a+9b+c=2019\)
\(f\left(7\right)-f\left(2\right)=\left(343a+49b+7c+d\right)-\left(8a+4b+2c+d\right)=335a+45b+5c=5.\left(61a+9b+c\right)+30a=2019+30a⋮3\)
\(\Rightarrowđpcm\)