Bài 4: Tính hợp lý
A=\(\frac{4}{\text{1⋅2}}+\frac{4}{\text{3⋅5}}+......+\frac{4}{\text{20⋅11⋅2013}}\)
Bài 5: So sánh với 1:
A=\(\frac{1}{\text{1⋅2}}+\frac{1}{\text{2⋅3}}+\frac{1}{\text{3⋅4}}+......+\frac{1}{\text{49⋅50}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(\text{13}\frac{\text{1}}{\text{4}}-\text{2}\frac{\text{5}}{\text{27}}-\text{10}\frac{\text{5}}{\text{6}}\right).\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\left(\text{1}\frac{\text{3}}{\text{7}}+\frac{\text{10}}{\text{3}}\right):\left(\text{12}\frac{\text{1}}{\text{3}}-\text{14}\frac{\text{2}}{\text{7}}\right)}=\frac{\left[\text{13}\frac{\text{1}}{\text{4}}-\left(\text{2}\frac{\text{5}}{\text{27}}+\text{10}\frac{\text{5}}{\text{6}}\right)\right].\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{100}}{\text{21}}:\frac{\text{-41}}{\text{21}}}\)
\(=\frac{\left(\text{13}\frac{\text{1}}{\text{4}}-\text{13}\frac{\text{1}}{54}\right).\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{-100}}{\text{41}}}=\frac{\frac{\text{25}}{\text{108}}.\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{-100}}{\text{41}}}\)
\(=\frac{\text{53}\frac{\text{1}}{\text{4}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{-100}}{\text{41}}}=\frac{\text{100}}{\frac{-\text{100}}{\text{41}}}=\text{-41}\)
Giải :
\(\frac{\left(\text{13}\frac{\text{1}}{\text{4}}-\text{2}\frac{\text{5}}{\text{27}}-\text{10}\frac{\text{5}}{\text{6}}\right).\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\left(\text{1}\frac{\text{3}}{\text{7}}+\frac{\text{10}}{\text{3}}\right):\left(\text{12}\frac{\text{1}}{\text{3}}-\text{14}\frac{\text{2}}{\text{7}}\right)}=\frac{\left[\text{13}\frac{\text{1}}{\text{4}}-\left(\text{2}\frac{\text{5}}{\text{27}}+\text{10}\frac{\text{5}}{\text{6}}\right)\right].\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{100}}{\text{21}}:\frac{\text{-41}}{\text{21}}}\)
\(=\frac{\left(\text{13}\frac{\text{1}}{\text{4}}-\text{13}\frac{\text{1}}{54}\right).\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{-100}}{\text{41}}}=\frac{\frac{\text{25}}{\text{108}}.\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{-100}}{\text{41}}}\)
\(=\frac{\text{53}\frac{\text{1}}{\text{4}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{-100}}{\text{41}}}=\frac{\text{100}}{\frac{-\text{100}}{\text{41}}}=\text{-41}\)
~~Học tốt~~
\(\frac{2017}{1.2.3}+\frac{2017}{2.3.4}+\frac{2017}{3.4.5}+...+\frac{2017}{19.20.21}\)
\(=2017\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{19.20.21}\right)\)
\(=2017.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{19.20.21}\right)\)
\(=2017.\left(1-\frac{1}{2}-\frac{1}{3}-\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)-...-\left(\frac{1}{19}-\frac{1}{20}-\frac{1}{21}\right)\right)\)
\(=2017.\left(1+\frac{1}{21}\right)\)phá ngoặc trước dấu trừ đổi dấu,rút gọn:
\(=2017.\frac{20}{21}=\frac{40340}{21}\)
Bài 1 mk ko hiểu đề cho lắm
Bài 2 :
Đặt \(A=\frac{x+4}{x-2}+\frac{2x-5}{x-2}\)
Ta có :
\(\frac{x+4}{x-2}+\frac{2x-5}{x-2}=\frac{x+4+2x-5}{x-2}=\frac{3x-1}{x-2}=\frac{3x-6+5}{x-2}=\frac{3\left(x-2\right)}{x-2}+\frac{5}{x-2}=3+\frac{5}{x-2}\)
Để \(A\) là số nguyên thì \(\frac{5}{x-2}\) phải là số nguyên \(\Rightarrow\) \(5⋮\left(x-2\right)\) \(\Rightarrow\) \(\left(x-2\right)\inƯ\left(5\right)\)
Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)
Do đó :
\(x-2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(x\) | \(3\) | \(1\) | \(7\) | \(-3\) |
Vậy \(x\in\left\{-3;1;3;7\right\}\) thì A là số nguyên
Chúc bạn học tốt ~
Bài 5 :
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{59}\)
\(A=1-\frac{1}{50}\)
từ trên ta có : \(1-\frac{1}{50}< 1\)
\(\Rightarrow A< 1\)