K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2019

\(f\left(x\right)\)có hai nghiệm là x=-1 và x=1

ta có: \(f\left(1\right)=0\Leftrightarrow1^3+a+b-2=0\Leftrightarrow a+b=1\)(1)

\(f\left(-1\right)=\left(-1\right)^3+a\left(-1\right)^2+b\left(-1\right)-2=0\Leftrightarrow a-b=3\)(2)

Từ (1) VÀ (2) TA CÓ: \(a=\frac{1+3}{2}=2;b=\frac{1-3}{2}=-1\)

b)Đề bài tìm số chính phương có bốn chữ số khác nhau ?

Đặt : \(\overline{abcd}=n^2;\overline{dcba}=m^2\)(g/s m, n là các số tự nhiên)

Theo bài ta có các giả thiết sau:  

\(1000\le m^2,n^2\le9999\Rightarrow32\le m;n\le99\)(1)

\(m^2⋮n^2\Rightarrow m⋮n\)(2)

=> Đặt m=kn (k là số tự nhiên, K>1)

Ta có: \(\hept{\begin{cases}32\le n\le99\\32\le m\le99\end{cases}\Rightarrow}\hept{\begin{cases}32.k\le kn\le99k\\32\le kn\le99\end{cases}\Rightarrow}32k\le kn\le99\Rightarrow k\le\frac{99}{32}\Rightarrow k\le3\)

Vậy nên k=2 hoặc bằng 3

Vì \(m=kn\Rightarrow m^2=k^2.n^2\Rightarrow\overline{dcba}=k^2.\overline{abcd}\)

+) Với k=2

Ta có: \(\overline{dcba}=4.\overline{abcd}\)

Vì  \(\overline{abcd};\overline{dcba}\)là các số chính phương có 4 chữ số khác nhau \(\Rightarrow d,a\in\left\{1;4;6;9;\right\}\)

và \(\overline{dcba}⋮\overline{abcd}\)nên d>a(2)

@) Khi \(a\ge4\Rightarrow\overline{dcba}\ge4.\overline{4bcd}>9999\)(loại)

Nên a=1.

Ta có: \(\overline{dcb1}=4.\overline{1bcd}\)vô lí vì không có số \(d\in\left\{1;4;6;9;\right\}\)nhân với 4 bằng 1

+) Với K=3

tương tự lập luận trên ta có a=1

Ta có: \(\overline{dcb1}=9.\overline{1bcd}\)=> d=9

Ta có: \(\overline{9cb1}=9.\overline{1bc9}\Leftrightarrow9000+c.100+b.10+1=9\left(1000+b.100+c.10+9\right)\)

\(\Leftrightarrow10c=890b+80\Leftrightarrow c=89b+8\)vì c, b là các số tự nhiên từ 0, đến 9

=> b=0; c=8

=> Số cần tìm 1089 và 9801 thỏa mãn với các điều kiện bài toán 

Vì q=a2q=a2 nên ta có : q=1;4,9q=1;4,9

Với q=1q=1 ta có : abcd¯¯¯¯¯¯¯¯¯¯=dcba¯¯¯¯¯¯¯¯¯¯→a=b=c=dabcd¯=dcba¯→a=b=c=d 

Mà abcd¯¯¯¯¯¯¯¯¯¯abcd¯ có dạng bình phương 1 số nguyên nên ta thử với các số có dạng xxxx¯¯¯¯¯¯¯¯¯¯¯=y2 (y∈Z)xxxx¯=y2 (y∈Z). Phương trình này vô nghiệm nên trường hợp này loại.

Với q=4q=4 ta có : abcd¯¯¯¯¯¯¯¯¯¯=4dcba¯¯¯¯¯¯¯¯¯¯abcd¯=4dcba¯

Có d chẵn, a≥9a≥9 nên d=2→a=8;9d=2→a=8;9 

Tiếp tục thử với a=8; a=9a=8; a=9 bằng cách tách số hạng ta không tìm được số nào thỏa mãn.

Với q=9q=9 ta có a=9; d=1a=9; d=1 Tách tương tự không tìm được số nào thỏa mãn.

Nếu có chắc thử sai nhưng hướng làm là thế 

27 tháng 11 2017
kết quả là bằng 7 vì 7 là số mình thích nhất. biết vì sao mình thích số 7 không. vì số 7 là số áo của ronaldo và là tháng mình sinh ra. kết quả là bằng 7 ok. vỗ tay ... vỗ tay
3 tháng 5 2017

DO A LÀ SỐ CHÍNH PHƯƠNG VÀ A KHÁC 0 , A CÓ 1 CHỮ SỐ

=> A CÓ THỂ BẰNG 1 . 4 . 9

+, TH1 : A = 1

=> 1D LÀ SỐ CHÍNH PHƯƠNG

=> D = 6

=> C6 LÀ SỐ CHÍNH PHƯƠNG

=> C = 3 HOẶC BẰNG 1( TH 1 KHÔNG THỎA MÃN)

=> 1B36 LÀ SỐ CHÍNH PHƯƠNG

=> B = 9 ( DO 44^2 = 1936

+. TH2 : A= 4

=> 4D LÀ SỐ CHÍNH PHƯƠNG 

=> D = 9

=> C9 LÀ SỐ CHÍNH PHƯƠNG

=> C HOẶC BẰNG 0 , HOẶC BẰNG 4

+. NẾU C = 0

=> 4B09 LÀ SỐ CHÍNH PHƯƠNG

=> LOẠI DO KHÔNG CÓ B THỎA MÃN

+, NẾU C = 4

=> 4B49 LÀ SỐ CHÍNH PHƯƠNG

=> KHÔNG TỒN TẠI B THỎA MÃN

+, A = 9

=> 9D LÀ SỐ CHÍNH PHƯƠNG 

=> KHÔNG TÍM THẤY D THỎA MÃN

 VẬY A= 1 , B = 9 , C=3 , D=6

3 tháng 5 2017

a=1,4,9.

Nếu a=1→b=6→c=9, nhưng không có d thỏa mãn giả thiết

Nếu a=4→b=9, nhưng không có c thỏa mãn giả thiết.

Nếu a=9→b=, nhưng khôn có c thoản mãn giả thiết.

Vậy không tồn tại a,b,c,d thỏa đề ra !

15 tháng 9 2017

giúp tớ với nhé!

8 tháng 2 2021

Bài 5:

Vì số cần tìm nhỏ nhất nên ta lần lượt thử chọn với các giá trị số nhỏ nhất.
- Giả sử số tự nhiên có dạng 11111a
=> 111110 + a chia hết cho 1987. Vì 111110 chia 1987 dư 1825

=> a chia 1987 dư 162 ( vô lí - 162 > a).
- Giả sử số tự nhiên có dạng 11111ab
=> 1111100 + ab chia hết cho 1987. Vì 1111100 chia 1987 dư 367=> ab chia 1987 dư 1620 ( vô lí - 1620 > ab)
- Giả sử số tự nhiên có dạng 11111abc
=> 11111000 + abc chia hết cho 1987. Vì 11111000 chia 1987 dư 1683

=> abc chia 1987 dư 304. Mà abc nhỏ nhất

=> abc = 304
Vậy số tự nhiên là 11111304

31 tháng 10 2016

Ta nhận thấy rằng nếu a = 2 thì \(9\overline{abcd}\) là một số có nhiều hơn 4 chữ số (trái với giả thiết)

Vậy 0< a <2 , mà a là số tự nhiên nên a = 1 thỏa mãn đề bài.

Suy ra \(9\times\overline{1bcd}=\overline{dcb1}\)

Chú ý rằng 9d có tận cùng bằng 1 khi d = 9 (duy nhất)

Vậy ta có \(9\times\overline{1bc9}=\overline{9cb1}\)

Mặt khác, vế trái của đẳng thức chia hết cho 9 , vậy vế phải cũng chia hết cho 9.

Do vậy 9 + c + b + 1 = 10 + b + c chia hết cho 9

Vậy b+c chỉ thuộc các giá trị là 8 và 17 (các giá trị lớn hơn loại vì b+c < 19)

Với mỗi trường hợp ta chọn các giá trị của b từ 1 đến 9 , đồng thời ta cũng tìm được giá trị của c tương ứng.

Tới đây bạn tự làm nhé ^^

31 tháng 10 2016

Chị Ngọc chịu khó cày thiệt á nha, cày cả trưa luôn ^^

E lười thí mồ =)))