1. Viết phương trình đường thẳng \(\left(d_1\right)\)đi qua 2 điểm A(-2,3) và B(1,-3)
2. Cho đường thẳng \(\left(d_2\right)\): y = mx + 2. Xác định m để dường thẳng \(\left(d_2\right)\) song song với đường thẳng \(\left(d_1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Để hai đường song song thì m^2-1=1 và -m^2+3=5
=>m^2=2 và -m^2=2
=>\(m=\pm\sqrt{2}\)
c: Vì (d2) vuông góc với (d3)
và (d1)//(d2)
nên (d1) vuông góc với (d3)
a: (d)//(d1)
=>(d): y=-2x+b
Thay x=2 và y=-3 vào (d), ta được:
b-4=-3
=>b=1
b: Vì (d) vuông góc (d2)
nên (d): y=x+b
Thay x=-1 và y=-2 vào (d), ta được:
b-1=-2
=>b=-1
a, Vì \(a=1>0\) nên đths đồng biến trên R
b, Vì (d1)//(d2) nên \(\left\{{}\begin{matrix}a=1\\b\ne3\end{matrix}\right.\)
Vì (d2) cắt trục hoành tại hoành độ 2 nên \(y=0;x=2\)
\(\Leftrightarrow0=2a+b=2+b\Leftrightarrow b=-2\left(tm\right)\)
Vậy đths là \(\left(d_2\right):y=x-2\)