Giải các phương trình sau :
a, \(\left(6x+8\right)\left(6x+6\right)\left(6x+7\right)^2=72\)
b,\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x-2\right)\left(4x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\4x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{5}{4}\end{cases}}\)
ĐKXĐ: x khác -4;-5;-6;-7
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{\left(x+4\right).\left(x+5\right)}+\frac{1}{\left(x+5\right).\left(x+6\right)}+\frac{1}{\left(x+6\right).\left(x+7\right)}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{x+7-x-4}{\left(x+4\right).\left(x+7\right)}=\frac{1}{18}\Rightarrow3.18=x^2+11x+28\)
\(\Rightarrow x^2+11x-26=0\)
\(\Rightarrow\left(x-2\right).\left(x+13\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-13\end{cases}\left(tm\right)}\)
Vậy...
Đặt
6x+7 = 7 , ta có
\(\left(t+1\right)\left(t-1\right)t^2=72\Rightarrow\left(t^2-1\right)t^2=72\)
\(\Rightarrow t^4-t^2-72=0\)
Lại đặt \(t^2=a\) (a \(\ge0\) )
\(\Rightarrow a^2-a-72=0\Rightarrow\left(a+8\right)\left(a-9\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-8\left(ktm\right)\\a=9\left(tm\right)\end{matrix}\right.\)
a = 9 => \(\left[{}\begin{matrix}t=3\\t=-3\end{matrix}\right.\)
Với t = 3
=> 6x + 7 =3
=> 6x = -4
=> x= \(-\frac{2}{3}\)
Với t = -3
=> 6x + 7 = -3
=> 6x = -10
=> x = \(-\frac{5}{3}\)
Vậy.....
b)
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x-4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\Rightarrow\frac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Rightarrow\frac{3}{\left(x+7\right)\left(x+4\right)}=\frac{1}{18}\Rightarrow x^2+11x+28-54=0\Rightarrow x^2+11x-26=0\)
\(\Rightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)
a) Ta có:
(6x+8)(6x+6)(6x+7)2 = 72
Đặt \(6x+7=a\)
\(\Rightarrow\left(a+1\right)\left(a-1\right)a^2=72\)
\(\Leftrightarrow a^4-a^2-72=0\)
\(\Leftrightarrow\left(a^4+8a^2\right)+\left(-9a^2-72\right)=0\)
\(\Leftrightarrow\left(a^2+8\right)\left(a^2-9\right)=0\)
Đễ thấy \(a^2+8>0\)
\(\Rightarrow a^2-9=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=3\\a=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}6x+7=3\\6x+7=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=\frac{-5}{3}\end{cases}}\)
b)
a. \(x^2+9x+20=\left(x^2+4x\right)+\left(5x+20\right)\)
\(=x\left(x+4\right)+5\left(x+4\right)=\left(x+4\right)\left(x+5\right)\)
Tương tự: \(x^2+11x+30=\left(x+5\right)\left(x+6\right)\)
\(x^2+13x+42=\left(x+6\right)\left(x+7\right)\)
\(\Rightarrow PT=\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(=\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(=\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(=18\left(x+7\right)-18\left(x+4\right)=\left(x+7\right)\left(x+4\right)\)
\(=x^2+11x+28=54\)
\(=x^2+11x-26=0\)
\(=\left(x^2-2x\right)+\left(13x-26\right)=0\)
\(=x\left(x-2\right)+13\left(x-2\right)=0\)
\(=\left(x+13\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-13\\x=2\end{matrix}\right.\)
b. \(\left(3x-2\right)\left(4x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=-\frac{5}{4}\end{matrix}\right.\)
À tớ thiếu ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-4\\x\ne-5\\x\ne-6\\x\ne-7\end{matrix}\right.\)
Bài 1:
a) Đặt \(6x+7=y\)
\(PT\Leftrightarrow y^2\left(y-1\right)\left(y+1\right)=72\)
\(\Leftrightarrow y^4-y^2-72=0\)
\(\Leftrightarrow\left(y^2-9\right)\left(y^2+8\right)=0\)
Mà \(y^2+8>0\left(\forall y\right)\)
\(\Rightarrow y^2-9=0\Leftrightarrow\left(y-3\right)\left(y+3\right)=0\Leftrightarrow\left(6x+4\right)\left(6x+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}6x+4=0\\6x+10=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{3}\\x=-\frac{5}{3}\end{cases}}\)
b) đk: \(x\ne\left\{-4;-5;-6;-7\right\}\)
\(PT\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow x^2+11x+28=54\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left(x+13\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-13\\x=2\end{cases}}\)
Bài 2 không tiện vẽ hình nên thôi nhờ godd khác:)
Bài 3:
Ta có:
\(a_n=1+2+3+...+n\)
\(a_{n+1}=1+2+3+...+n+\left(n+1\right)\)
\(\Rightarrow a_n+a_{n+1}=2\cdot\left(1+2+3+...+n\right)+\left(n+1\right)\)
\(=2\cdot\frac{n\left(n+1\right)}{2}+n+1\)
\(=n^2+n+n+1=\left(n+1\right)^2\)
Là SCP => đpcm
a/ Đặt \(6x+7=a\Rightarrow\left\{{}\begin{matrix}6x+8=a+1\\6x+6=a-1\end{matrix}\right.\)
\(\Rightarrow\left(a-1\right)\left(a+1\right)a^2-72=0\)
\(\Leftrightarrow\left(a^2-1\right)a^2-72=0\)
\(\Leftrightarrow a^4-a^2-72=0\)
\(\Leftrightarrow\left(a^2-9\right)\left(a^2+8\right)=0\)
\(\Leftrightarrow a^2=9\) (do \(a^2+8>0\))
\(\Rightarrow\left[{}\begin{matrix}a=3\\a=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}6x+7=3\\6x+7=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{-2}{3}\\x=\frac{-5}{3}\end{matrix}\right.\)
b/ ĐKXĐ: \(x\ne-4;-5;-6;-7\)
\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow x^2+11x-26=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)