Cho ( O;R) ; đường kính AB cố định và dây AC. Biết khoảng cách từ O lần lượt đến AC và BC là 8 cm và 6cm
a) tính AC và BC và bán kính R.
b) gọi D đối xứng với A qua C. Chứng minh : tam giác ABD cân.
b) Khi C di chuyển trên (O). Chứng minh : D thuộc một đường tròn cố định.
a) Ta có OA=OB=OC =R => ABC vuông tại C ( có Trung tuyến OC =AB/2)
Kẻ OH ; OK lần lượt vuông góc với AC;BC => H là trung điểm của AC; K là TD của BC
=> OHCB là HCN =>AC=2HC =2OK =2.6=12
BC =2CK =2.OH =2.8=16
b)D đối xứng với A qua C mà BC vuông góc AC => BC là trung trực của AD => BA =BD
=> ABD cân tại B
c) Do AB cố định mà BD =AB =2R
=> D nằm trên đường tròn tâm B Bán kính BD =AB =2R
TD là gì 😥?