Cho \(a^3-3ab^2=5\)và \(b^3-3a^2b=10\). Tính \(S=a^2+b^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(a^3-3ab^2+b^3-3a^2b=15\)
\(\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-3ab\left(a+b\right)=15\)
\(\Rightarrow\left(a+b\right)\left(a^2-4ab+b^2\right)=15\)
Đến đây thì đơn giản rồi,bạn lập bảng xét ước nữa là xong
@Khong Biet trả lời sai rồi. đây có phải bài nghiệm nguyên đâu mà lập bảng xét dấu
Theo đề, ta có: 6a=2b=-4c=5d
\(\Leftrightarrow\dfrac{a}{10}=\dfrac{b}{30}=\dfrac{c}{-15}=\dfrac{d}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{10}=\dfrac{b}{30}=\dfrac{c}{-15}=\dfrac{d}{12}=\dfrac{3a-2b+4c-d}{3\cdot10-2\cdot30+4\cdot\left(-15\right)-12}=\dfrac{2}{-102}=-\dfrac{1}{51}\)
Do đó: a=-10/51; b=-10/17; c=5/17; d=4/17
\(a+b-2c-3d=\dfrac{-10}{51}-\dfrac{10}{17}-2\cdot\dfrac{5}{17}-3\cdot\dfrac{4}{17}=-\dfrac{106}{51}\)
+) a3 - 3ab2 = 5 \(\Leftrightarrow\) (a3 - 3ab2)2 = 25 \(\Leftrightarrow\) a6 - 6a4b2 + 9a2b4 = 25
+) b3 - 3a2b = 10 \(\Leftrightarrow\) (b3 - 3a2b)2 = 100 \(\Leftrightarrow\) b6 - 6a2b4 + 9a4b2 = 100
\(\Leftrightarrow\) a6 + b6 + 3a2b4 + 3a4b2 = 125
\(\Leftrightarrow\) (a2 + b2)3 = 125
\(\Leftrightarrow\) a2 + b2 = 5
Ta có:
S = 2019a2 + 2019b2
= 2019(a2 + b2)
= 2019 . 5
= 10095
Vậy S = 10095
Chúc bạn học tốt!
bạn chỉ cần đăng câu hỏi 1 lần thôi nhá, yên tâm vì mình sẽ giúp bạn
uk, giúp mk các câu hỏi mk gửi nhé chiều nay mk học rùi
Theo đề, ta có: 6a=2b=-4c=5d
\(\Leftrightarrow\dfrac{a}{10}=\dfrac{b}{30}=\dfrac{c}{-15}=\dfrac{d}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{10}=\dfrac{b}{30}=\dfrac{c}{-15}=\dfrac{d}{12}=\dfrac{3a-2b+4c-d}{3\cdot10-2\cdot30+4\cdot\left(-15\right)-12}=\dfrac{2}{-102}=-\dfrac{1}{51}\)
Do đó: a=-10/51; b=-10/17; c=5/17; d=4/17
\(a+b-2c-3d=\dfrac{-10}{51}-\dfrac{10}{17}-2\cdot\dfrac{5}{17}-3\cdot\dfrac{4}{17}=-\dfrac{106}{51}\)
Ta có : \(\left(a^2+b^2\right)^3=a^6+3a^4b^2+3a^2b^4+b^6\)
\(=\left(a^6-6a^4b^2+9a^2b^4\right)+\left(b^6-6a^2b^4+9a^4b^2\right)\)
\(=\left(a^3-3ab^2\right)^2+\left(b^3-3a^2b\right)^2\)
\(=5^2+10^2\)
\(=125\)
\(\Rightarrow S^3=125\)
\(\Rightarrow S=5\)