1/1x3+1/3X5+1/5X7+1/7X9+…+1/99X101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 1/3.5 + 1/5.7 + 1/7.9 + ..... + 1/99.101
=> 2A = 2/3.5 + 2/5.7 + 2/7.9 + ..... + 2/99.101
=> 2A = 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/99 - 1/101
=> 2A = 1/3 - 1/101
=> 2A = 88/303
=> A = 44/303
\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
\(\Rightarrow B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(\Rightarrow B=1-\frac{1}{101}=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)
_Học tốt_
=(1-1/3+1/3-1/5+1/5-1/7+1/7-1/9) chia 2
=(1-1/9)chia 2
=8/9 chia 2
=4/9
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{99\cdot101}\)
\(=2\cdot\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{99\cdot101}\right):2\)
\(=\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\right):2\)
\(=\left(\frac{3-1}{1\cdot3}+\frac{5-3}{3\cdot5}+\frac{7-5}{5\cdot7}+...+\frac{101-99}{99\cdot101}\right):2\)
\(=\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right):2\)
\(=\left(\frac{1}{1}-\frac{1}{101}\right):2\)
\(=\frac{100}{101}:2=\frac{50}{101}\).
Đặt \(A=\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}\)
\(2A=\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}\)
\(2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{9}\)
\(2A=\frac{1}{1}-\frac{1}{9}=\frac{8}{9}\)
\(A=\frac{8}{9}.\frac{1}{2}=\frac{4}{9}\)
A= 1/(1x3) + 1/(3x5)+ 1/(5x7) + 1/(7x9) + 1/(9x11)
A x 2 = 2/(1x3) + 2/(3x5)+ 2/(5x7) + 2/(7x9) + 2/(9x11)
Nhận xét :
2/(1x3) = 1 - 1/3
2/(3x5) = 1/3 - 1/5
2/(5x7) = 1/5 - 1/7
2/(7x9) = 1/7 - 1/9
2/(9x11) = 1/9 - 1/11
A x 2 = 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11
A x 2 = 1 - 1/11
A x 2 = 10/11
A = 10/11 : 2 = 5/11
các bạn k mình nha!
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\frac{100}{101}\)
\(=\frac{50}{101}\)
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{99\cdot101}\)
\(=2\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{99\cdot101}\right)\)
\(=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{99\cdot101}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{1}-\frac{1}{101}=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)