Cho ba số thực a,b,c dương. CMR
\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(c+a\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge1\)
Cứu mk !!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với x là số dương, áp dụng bđt cauchy ta có:
\(\sqrt{x^3+1}=\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\le\frac{x+1+x^2-x+1}{2}=\frac{x^2+2}{2}\)
=> \(\sqrt{\frac{1}{x^3+1}}\ge\frac{2}{x^2+2}\left(1\right)\)
Áp dụng bđt (1) ta được:
\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}=\sqrt{\frac{1}{1+\left(\frac{b+c}{a}\right)^3}}\ge\frac{2}{\left(\frac{b+c}{a}\right)^2+2}=\frac{2a^2}{\left(b+c\right)^2+2a^2}\)
Suy ra \(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\ge\frac{2a^2}{2\left(b^2+c^2\right)+2a^2}=\frac{a^2}{a^2+b^2+c^2}\left(2\right)\)
Tương tự ta có: \(\sqrt{\frac{b^3}{b^3+\left(c+a\right)^3}}\ge\frac{b^3}{a^3+b^3+c^3}\left(3\right);\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge\frac{c^3}{a^3+b^3+c^3}\left(4\right)\)
Cộng (2),(3),(4) vế theo vế:
\(VT\ge\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)
Dấu "=" xảy ra khi a=b=c
Sử dụng BĐT AM-GM ta có:
\(\sqrt{1+x^3}=\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\le\frac{x^2-x+1+x+1}{2}=\frac{x^2+2}{2}\)
Đẳng thức xảy ra <=> \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Ta có \(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}=\frac{1}{\sqrt{1+\left(\frac{b+c}{a}\right)^2}}\ge\frac{2}{\left(\frac{b+c}{a}\right)^2+2}\)
\(=\frac{2a^2}{2a^2+\left(b+c\right)^2}\ge\frac{2a^2}{2a^2+2\left(b^2+c^2\right)}=\frac{a^2}{a^2+b^2+c^2}\)
Tương tự có \(\hept{\begin{cases}\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}\ge\frac{b^2}{a^2+b^2+c^2}\\\sqrt{\frac{c^3}{c^3+\left(a+c\right)^3}}\ge\frac{c^2}{a^2+b^2+c^2}\end{cases}}\)
Cộng 3 vế BĐT trên ta được đpcm
Dấu "=" <=> a=b=c
Ta dự đoán :\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\ge\frac{a^2}{a^2+b^2+c^2}\)
Thật vậy ta sẽ chứng minh nó:
\(\Leftrightarrow\left(a^2+b^2+c^2\right)\ge a\left(a^3+\left(b+c\right)^3\right).\)
\(\Leftrightarrow2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\ge a\left(b+c\right)^3\left(#\right)\)
Ta có:\(2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\ge a^2\left(b+c\right)^2+\frac{1}{4}\left(b+c\right)^4\ge a\left(b+c\right)^3\)
Từ đó , ta có bất đẳng thức \(\left(#\right).\)
Tương tự:
\(\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}\ge\frac{b^2}{a^2+b^2+c^2}\)
\(\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge\frac{c^2}{a^2+b^2+c^2}.\)
Cộng bất đẳng thức trên lại ta có điểu phải chứng minh.
Dấu bằng xảy ra khi \(a=b=c\)
Gọi A là vế trái của BĐT cần chứng minh. Không mất tính tổng quát, ta giả sử a + b + c = 3. Áp dụng BĐT AM - GM ta có:
\(\sqrt{\frac{\left(a+b\right)^3}{8ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(a+b\right)^3}{8bc\left(4a+4b+c\right)}}+\frac{ab\left(4a+4b+c\right)}{27}\)\(\ge\frac{1}{2}\left(a+b\right)\)
Suy ra
\(\sqrt{\frac{\left(a+b\right)^3}{8ab\left(4a+4b+c\right)}}\)\(+\frac{ab\left(4a+4b+c\right)}{54}\ge\frac{1}{4}\left(a+b\right)\)
Tương tự
\(\sqrt{\frac{\left(b+c\right)^3}{8bc\left(4b+4c+a\right)}}+\frac{bc\left(4b+4c+a\right)}{54}\ge\frac{1}{4}\left(b+c\right)\)
và \(\sqrt{\frac{\left(c+a\right)^3}{8ca\left(4c+4a+b\right)}}+\frac{ca\left(4c+4a+b\right)}{54}\ge\frac{1}{4}\left(c+a\right)\)
Cộng ba BĐT trên ta có:
\(\frac{1}{2\sqrt{2}}A\ge B\)
Với \(A=\frac{1}{54}[ab\left(4a+4b+c\right)+bc\left(4b+4c+a\right)\)
\(+ca\left(4c+4a+b\right)]\)
\(=\frac{1}{54}\left[4ab\left(a+b\right)+4bc\left(b+c\right)+4ca\left(c+a\right)+3abc\right]\)
\(=\frac{1}{54}\left[4\left(a+b+c\right)\left(ab+bc+ca\right)-9abc\right]\)
\(\le\frac{1}{54}\left(a+b+c\right)^3=\frac{1}{2}\)
và \(B=\frac{1}{4}.2\left(a+b+c\right)=\frac{3}{2}\)
Suy ra \(\frac{1}{2\sqrt{2}}A\ge\frac{3}{2}-\frac{1}{2}=1\Rightarrow A\ge2\sqrt{2}\)
Vậy
\(\sqrt{\frac{\left(a+b\right)^3}{ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(a+b\right)^3}{bc\left(4a+4b+c\right)}}+\sqrt{\frac{\left(c+a\right)^3}{ca\left(4c+4a+b\right)}}\ge2\sqrt{2}\)(đpcm)
Bài này có trong đề thi HSG 9 của huyện hay tỉnh nào đấy :)) được cái thầy t bắt cày đi cày lại cả chục cái đề thi nên bài này t nhớ lắm :))
Với x là số dương, áp dụng bđt Cô-si
\(\sqrt{x^3+1}=\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\le\frac{x+1+x^2-x+1}{2}=\frac{x^2+2}{2}\)
\(\Rightarrow\sqrt{\frac{1}{x^3}}\ge\frac{2}{x^2+2}\) (*)
Dấu (=) xảy ra khi x = 2
Áp dụng bđt (*)
\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}=\sqrt{\frac{1}{1+\left(\frac{b+c}{a}\right)^3}}\ge\frac{2}{\left(\frac{b+c}{a}\right)^2+2}=\frac{2a^2}{\left(b+c\right)^2+2a^2}\)
\(\Rightarrow\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\ge\frac{2a^2}{2\left(b^2+c^2\right)+2a^2}=\frac{a^2}{a^2+b^2+c^2}\left(1\right)\)
CMTT :
\(\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}\ge\frac{b^2}{a^2+b^2+c^2}\) (2)
\(\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge\frac{c^2}{a^2+b^2+c^2}\) (3)
Cộng vế với vế của (1) ; (2) ; (3) ; ta được ĐPCM
\(\sqrt{\frac{1}{x^3}}\ge\frac{2}{x^2+2}\Rightarrow\sqrt{\frac{1}{1+\left(\frac{b+c}{a}\right)^3}}\ge\frac{2}{\left(\frac{b+c}{a}\right)^2+2}\)
Có nhầm chỗ nào ko vậy bạn chứ ở dưới mẫu có cộng 1 nữa mà