tìm giá trị nguyên lớn nhất của m sao cho bất đẳng thức sau luôn luôn đúng với mọi số thực x :
( x + 1 )( x + 2 )2 ( x + 3 ) \(\ge\)m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cô bố sung cách cm khác ở phân cuối của Ngọc. Cô thấy rằng nó logic hơn, vì phần lập luận dòng cuối của Ngọc có vẻ chưa rõ ràng :)
Sau khi biến đổi đc về dạng \(t^2+t-m\ge0\), áp dụng định lý về dấu tam thức bậc hai ta có:
\(\hept{\begin{cases}1>0\\\Delta< 0\end{cases}\Leftrightarrow1^2+4m< 0\Leftrightarrow m< -\frac{1}{4}}\)
Vậy m nguyên lớn nhất là -1.
Ta có : \(\left(x+1\right)\left(x+2\right)^2\left(x+3\right)\ge m\)
\(\Leftrightarrow\left[\left(x+1\right)\left(x+3\right)\right].\left(x+2\right)^2\ge m\)
\(\Leftrightarrow\left(x^2+4x+3\right)\left(x^2+4x+4\right)\ge m\)
Đặt \(t=x^2+4x+3\) \(\Rightarrow t\left(t+1\right)\ge m\Leftrightarrow t^2+t-m\ge0\)
\(\Leftrightarrow\left(t^2+2.t.\frac{1}{2}+\frac{1}{4}\right)-\left(m+\frac{1}{4}\right)\ge0\Leftrightarrow\left(t-\frac{1}{2}\right)^2-\left(m+\frac{1}{4}\right)\ge0\)
Ta có \(\left(t-\frac{1}{2}\right)^2\ge0\Rightarrow m+\frac{1}{4}\le0\Rightarrow m\le-\frac{1}{4}\)
Mà m là số nguyên lớn nhất nên m = -1.
Vậy m = -1 thoả mãn đề bài.
a: Trường hợp 1: m=0
Bất phương trình sẽ là \(0x^2+3\cdot0\cdot x+0+1>0\)
=>1>0(luôn đúng)
Trường hợp 2: m<>0
\(\text{Δ}=\left(3m\right)^2-4m\left(m+1\right)\)
\(=9m^2-4m^2-4m=5m^2-4m\)
Để phương trình có nghiệm đúng với mọi số thực x thì \(\left\{{}\begin{matrix}m\left(5m-4\right)< 0\\m>0\end{matrix}\right.\Leftrightarrow0< m< \dfrac{4}{5}\)
Vậy: 0<=m<4/5
b: Trường hợp 1: m=4
\(g\left(x\right)=\left(4-4\right)\cdot x^2+\left(2\cdot4-8\right)x+4-5=-1< 0\)(luôn đúng)
Trường hợp 2: m<>4
\(\text{Δ}=\left(2m-8\right)^2-4\left(m-4\right)\left(m-5\right)\)
\(=4m^2-32m+64-4\left(m^2-9m+20\right)\)
\(=4m^2-32m+64-4m^2+36m-80\)
=4m-16
Để bất phương trình luôn âm thì \(\left\{{}\begin{matrix}4m-16< 0\\m-4< 0\end{matrix}\right.\Leftrightarrow m< 4\)
Vậy: m<=4
Dễ thấy:
\(VT\ge\left(x+y\right)^2+1-\dfrac{\left(x+y\right)^2}{4}=\dfrac{3\left(x+y\right)^2}{4}+1\)
Áp dụng Cô-si:
\(\dfrac{3\left(x+y\right)^2}{4}+1\ge2\sqrt{\dfrac{3\left(x+y\right)^2}{4}.1}=\sqrt{3}\left|x+y\right|\ge\sqrt{3}\left(x+y\right)\)
Do đó:
\(\left(x+y\right)^2+1-xy\ge\sqrt{3}\left(x+y\right),\forall x,y\in R\)
1.
Nếu \(m=0\), \(f\left(x\right)=2x\)
\(\Rightarrow m=0\) không thỏa mãn
Nếu \(x\ne0\)
Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)