K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2019

Do M(x) có giá trị là 0 với mọi x.Nên:

\(M\left(1\right)=a+b+c=0\)

\(M\left(-1\right)=a-b+c=0\)

Suy ra \(a+b+c=a-b+c=0\)

\(\Rightarrow a+2b=a=b-c\) (thêm b - c vào mỗi vế)

Từ \(a+2b=a\Rightarrow2b=0\Rightarrow b=0\)

Thay vào,ta có: \(a=b-c\Leftrightarrow a=-c\)

Thay vào đa thức M(x),ta có: \(-cx^2+c=0\forall x\Leftrightarrow-c\left(x^2-1\right)=0\forall x\)

Suy ra \(a=c=0\)

Vậy \(a=b=c=0\)

23 tháng 5 2018

Ta có : đa thức M = 0 với mọi x

Ta cho x nhận các giá trị x = 0, x = 1, x = -1

Ta có : c = 0, a + b + c = 0 , a - b + c = 0

Do đó : a + b = 0 và a - b = 0

nên a + b + a - b = 0 , suy ra : 2a = 0 \(\Rightarrow\)a = 0 . Ta có : b = 0

Vậy a = b = c = 0

15 tháng 1 2022

Ta có:

\(f\left(x\right)=ax^3+bx^2+cx+d\\ f\left(x\right)=0x^3+0x^2+0x+0\)

\(\Rightarrow a=b=c=d\left(theo.pp.đa.thức.đồng.nhất\right)\\ Chúc.bạn.học.Toán.tốt.\)

 

15 tháng 1 2022

\(f\left(x\right)=0\) có phải f(0) đâu bạn

17 tháng 4 2022

Mình có nghĩ ra cách này mọi người xem giúp mình với

f(x) = \(ax^2+bx+c\) 

Ta có f(0) = 2 => c = 2

Ta đặt Q(x) = \(ax^2+bx+c-2020\)

và G(x) = \(ax^2+bx+c+2021\)

f(x) - 2020 chia cho x - 1 hay Q(x) chia cho x - 1 được số dư

\(R_1\) = Q(1) = \(a.1^2+b.1+c-2020=a+b+c-2020\)  

Mà Q(x) chia hết cho x-1 nên \(R_1\) = 0

hay \(a+b+c-2020=0\). Mà c = 2 => a + b = 2018 (1)

G(x) chia cho x + 1 số dư 

\(R_2\) = G(-1) = \(a.\left(-1\right)^2+b.\left(-1\right)+c+2021=a-b+2+2021\)

Mà G(x) chia hết cho x + 1 nên \(R_2\)=0

hay \(a-b+2+2021=0\) => \(a-b=-2023\) (2)

Từ (1) và (2) suy ra: \(\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}a=-\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)

17 tháng 4 2022

ko biết !!!

23 tháng 3 2018

Có: \(M\left(0\right)=a.0^2+b.0+c=c=0\)

      \(M\left(1\right)=a.1^2+b.1+c=a+b+c=0\)

      \(M\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c=0\)

\(M\left(1\right)-M\left(-1\right)=a+b+c-\left(a-b+c\right)\)

\(=a+b+c-a+b-c=2b=0\)

=> \(b=0\)

=> \(a+b+c=a+0+0=a=0\)

Vậy \(a=b=c=0\)

7 tháng 2 2018

Để P(x) bằng đa thức 0 thì <=> \(\hept{\begin{cases}3m-5n+1=0\\4m-n-10=0\end{cases}}\)

(rồi giải bình thường thôi)

7 tháng 2 2018

Để P(x) bằng đa thức 0 thì \(\hept{\begin{cases}3m-5n+1=0\\4m-n-10=0\end{cases}}\)

<=>\(\hept{\begin{cases}3m-5n=-1\\20m-5n=50\end{cases}}\)<=> \(\hept{\begin{cases}-17m=-51\\3m-5n=-1\end{cases}}\)

<=> \(\hept{\begin{cases}m=3\\9-5n=-1\end{cases}}\)   <=> \(\hept{\begin{cases}m=3\\-5n=-10\end{cases}}\)

<=> \(\hept{\begin{cases}m=3\\n=2\end{cases}}\)

Vậy m=3, n=2 thì đa thức P(x) bằng đa thức 0
 

1 tháng 3 2018

P ( x ) = ax^3 + bx^2 + cx + d 

Ta có : P( 0 ) chia hết cho 5 

P ( 0 ) = a . 0 + b . 0 + c. 0 + d = d chia hết cho 5 

P ( 1 ) chia hết cho 5

P ( 1 ) = a . 1^3 + b . 1^2 + c . 1 + d = a + b + c + d chia hết cho 5  ( 1 ) 

mà d chia hết cho 5 => a + b + c chia hết cho 5 

P ( - 1 ) = a . ( -1)^3 + b . ( -1)^2 + c . - 1 + d 

           =       -a + b - c + d ( 2 ) 

Từ ( 1 ) và ( 2 ) : 

P ( 1 ) + P ( -1 ) = a + b + c + d  +  -a + b - c + d 

                        =     2b + 2d chia hết cho 5 

mà 2d chia hết cho 5 => 2b chia hết cho 5 => b chia hết cho 5 => a + c chia hết cho 5 => 2(a + c ) chia hết cho 5 

P ( 2 ) = a . 2^3 + b . 2^2 + c. 2 + d

          =  8a + 2b + 2c + d 

          =  2a + 6a + 2b + 2c + d 

          = 2 ( a + c ) + 6a + 2b + d chia hết cho 5 

Mà 2 ( a + c ) chia hết cho 5 , 2b chia hết cho 5 , d chia hết cho 5

=> 6a chia hết cho 5

=>   a chia hết cho 5

Mà a + c chia hết cho 5 => c chia hết cho 5

Vậy a, b , c , d chia hết cho 5

mình nha !!! 
Học giỏi !!!