cHỨNG MINH RẰNG
cÁC CẶP SỐ SAU LÀ SÓ NGUYÊN TỐ CÙNG NHAU VỚI MỌI n
2n+1 VÀ 6n+5
3n+2 và 5n+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: .
Các câu sau chứng minh tương tự.
k nha pls
gọi UCLN﴾2n + 1 ; 6n + 5﴿ là d
ta có :
2n + 1 chia hết cho d =>3(2n+1) chia hết cho d=>6n+3 chia hết cho d
6n + 5 chia hết cho d
=> [﴾6n + 5﴿ ‐ ﴾6n + 3﴿] chia hết cho d
=>2 chia hết cho d
=> d thuộc Ư﴾2﴿ = {1;2}
Mà 2n + 1 ; 6n + 5 lẻ nên n = 1
=>UCLN(..)=1
=>ntcn
Gọi ước chung của 2n+1 và 6n+5 là d(với d là số tự nhiên khác 0 ko cần d là số nguyên), ta có:
2n+1 chia hết cho d=> 6n+3 chia hết cho d
6n+5 chia hết cho d
=> (6n+5)-(6n+3)=2 chia hết cho d=> d\(\in\) {1;2}
Vì 2n+1 không chia hết cho 2 nên d=1
=> ước chung của 2n+1 và 6n+5 là 1=> UCLN(2n+1;6n+5)=1=> 2n+1 và 6n+5 nguyên tố cùng nhau với mọi n thuộc Z
b) gọi ước chung của 3n+2 và 5n+3 là d(với d là số tự nhiên khác 0).TA có:
3n+2 chia hết cho d=> 15n+10 chia hết cho d
5n+3 chia hết cho d=> 15n+9 chia hết cho d
=> (15n+10)-(15n+9)=1 chia hết cho d=> d=1
=> UC(3n+2;5n+3)=1=> UCLN(3n+2;5n+3)=1
=> 3n+2 và 5n+3 nguyên tố cùng nhau với mọi n thuộc Z
b, Gọi ƯCLN(3n+2; 5n+3) là d. Ta có:
3n+2 chia hết cho d=> 15n+10 chia hết cho d
5n+3 chia hết cho d => 15n+9 chia hết cho d
=> 15n+10 - (15n+9) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(3n+2; 5n+3) = 1
=> 3n+2 và 5n+3 nguyên tố cùng nhau (Đpcm)
a, Gọi ƯCLN(2n+1; 6n+5) là d. Ta có:
2n+1 chia hết cho d => 6n+3 chia hết cho d
6n+5 chia hết cho d
=> 6n+5 - (6n+3) chia hết cho d
=> 2 chia hết cho d
Mà 2n+1 là số lẻ không chia hết cho 2
=> d = 1
=> ƯCLN(2n+1; 6n+5) = 1
=> 2n+1 và 6n+5 nguyên tố cùng nhau (Đpcm)
a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)
Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau
a) Gọi d là UCLN của 3n+4 và 2n+3, suy ra:
3n+4 chia hết cho d ; 2n+3 chia hết cho d
+ Ta có : 2.(3n+4) chia hết cho d ( mình kí hiệu là dấu : nha )
=> 6n+8 : d (1)
Lại có : 3.(2n+3) :d
=> 6n+9 : d (2)
+ Từ 1 và 2 => 6n+9 - 6n - 8 :d
=> 1 : d
=> 3n+4 và 2n+3 nguyên tố cùng nhau
Phần b tương tự, kk cho mìnhh nha