Tìm b ∈ ℤ sao cho:
b - 3 là ước số của 8b - 14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b= [ -25 , 9]
vì -25 + 8=-17
9+8=17
-17[ số nguyên tố k đi nhóe
\(8b-62⋮b-7\)
\(\Rightarrow8b-56-6⋮b-7\)
\(\Rightarrow8.\left(b-7\right)-6⋮b-7\)
Mà \(8.\left(b-7\right)⋮b-7\)
\(\Rightarrow6⋮b-7\)
\(\Rightarrow b-7\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(\Rightarrow b-7\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
\(\Rightarrow b\in\left\{8;6;9;5;10;4;13;1\right\}\)
Vậy b = 1;4;5;6;8;9;10;13
Ta có: 8b + 46 là bội của b + 8
=> 8b + 46 chia hết cho b + 8
=> 8b + 64 - 18 chia hết cho b + 8
=> 8 (b + 8) - 18 chia hết cho b + 8
=> 18 chia hết cho b + 8
=> b + 8 thuộc Ư(18) = {-18 ; -9 ; -6 ; -3 ; -2 ; -1 ; 1 ; 2 ; 3 ; 6 ; 9 ; 18}
=> b thuộc {-26 ; -17 ; -14 ; -11 ; -10 ; -9 ; -7 ; -6 ; -5 ; -2 ; 1 ; 10}
Vậy ...
LÀM
Theo bài cho , ta có : 8b + 46 là bội của b + 8
Nên 8b + 46 phải chia hết cho b + 8
=> 8b + 64 - 18 chia hết cho b + 8
=> 8( b + 8 ) - 18 chia hết cho b + 8
=> -18 chia hết cho b + 8
=> b + 8 thuộc Ư(-18)
Mà ước của -18 = { -18 ; -9 ; -6 ; -3 ; -2 ; -1 ; 1 ; 2 ; 3 ; 6 ; 9 ; 18 }
+) Với b + 8 = -18 thì b = -26
+) Với b + 8 = -9 thì b = -17
+) Với b + 8 = -6 thì b = -14
+) Với b + 8 = -3 thì b = -11
+) Với b + 8 = -2 thì b = -10
+) Với b + 8 = -1 thì b = -9
+) Với b + 8 = 1 thì b = -7
+) Với b + 8 = 2 thì b = -6
+) Với b + 8 = 3 thì b = -5
+) Với b + 8 = 6 thì b = -2
+) Với b + 8 = 9 thì b = 1
+) Với b + 8 = 18 thì b = 10
Vậy để 8b + 46 là bội của b + 8 thì b thuộc { -26 ; -17 ; -14 ; -11 ; -10 ; -9 ; -7 ; -6 ; -5 ; -2 ; 1 ; 10 }
HỌC TỐT !
b + 3 là ước số của 6b + 31
\(\Rightarrow6b+31⋮b+3\)
\(\Rightarrow6\left(b+3\right)+13⋮b+3\)
\(\Rightarrow13⋮b+3\)
\(\Rightarrow b+3\in\left\{13,1,-13,-1\right\}\)
\(\Rightarrow b\in\left\{10,-2,-16,-4\right\}\)
Ta có: \(5b-23⋮b-6\)
\(\Leftrightarrow5b-30+7⋮b-6\)
mà \(5b-30⋮b-6\)
nên \(7⋮b-6\)
\(\Leftrightarrow b-6\inƯ\left(7\right)\)
\(\Leftrightarrow b-6\in\left\{1;-1;7;-7\right\}\)
hay \(b\in\left\{7;5;13;-1\right\}\)
Vậy: \(b\in\left\{7;5;13;-1\right\}\)
Ta có: b - 3 \(\in\)Ư(8b - 14)
<=> 8b - 14 \(⋮\)b - 3
<=> 8(b - 3) + 10 \(⋮\)b - 3
<=> 10 \(⋮\)b - 3
<=> b - 3 \(\in\)Ư(10) = {1; 2; 5; 10; -1; -2; -5; -10}
Lập bảng :
Vậy ....
Giải
b - 3 là ước số của 8b - 14.
\(\Rightarrow\left(8b-14\right)⋮\left(b-3\right)\)
\(\Rightarrow\left(8b-24+10\right)⋮\left(b-3\right)\)
\(\Rightarrow\left[8\left(b-3\right)+10\right]⋮\left(b-3\right)\)
Vì \(\left[8\left(b-3\right)\right]⋮\left(b-3\right)\) nên \(10⋮\left(b-3\right)\)
\(\Leftrightarrow b-3\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Ta có bảng sau :
Vậy \(b\in\left\{4;2;5;-1;8;-2;13;-7\right\}\)