K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 2 2019

\(A\) chia hết cho B khi \(\left\{{}\begin{matrix}2n\ge n+2\\3\ge n+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n\ge2\\n\le2\end{matrix}\right.\) \(\Rightarrow n=2\)

26 tháng 12 2016

Để đơn thức A chia hết cho -3xn+2yn+1 khi và chỉ khi 

\(\hept{\begin{cases}n+2\le2n\\n+1\le3\end{cases}\Leftrightarrow\hept{\begin{cases}n+2\le2n\\n\le2\end{cases}}}\)

Thay n = 2 vào \(n+2\le2n\), ta có : 

\(2+2\le2\times2\)(t/mãn) 

Vậy n\(\le2\) thì Đơn thúc A chia hết cho đơn thức B 

17 tháng 1 2017

Gớm nhỉ: bái phục

29 tháng 7 2017

\(\dfrac{A}{B}=\dfrac{x^{2n}y^3}{2.\left(-3\right)x^{n+2}y^{n+1}}=\dfrac{-1}{6}x^{2n-n-2}y^{3-n-1}=\dfrac{-1}{6}x^{n-2}y^{2-n}\Rightarrow\left\{{}\begin{matrix}n-2\ge0\\2-n\ge0\end{matrix}\right.\Rightarrow n=2}\)

15 tháng 12 2016

=2. vừa thi xog nha

 

25 tháng 12 2016

2

a) Ta có: \(A=\left(-\dfrac{1}{3}x^2y^4\right)\cdot\left(-\dfrac{3}{5}x^3y\right)^2\)

\(=\dfrac{-1}{3}x^2y^4\cdot\dfrac{-9}{5}x^6y^2\)

\(=\left(\dfrac{-1}{3}\cdot\dfrac{-9}{5}\right)\cdot\left(x^2\cdot x^6\right)\cdot\left(y^4\cdot y^2\right)\)

\(=\dfrac{3}{5}x^8y^6\)

25 tháng 12 2016


Vì để 1 đơn thức chia hết cho 1 đơn thức khác thì số mũ của mỗi biến trong đơn thức bị chia này phải lớn hơn hoặc bằng số mũ của mỗi biến tương ứng trong đơn thức chia