a) tìm một cách chứng minh của bất đẳng thức tam giác.
b) cho tam giác MNP.gọi I là trung điểm của đoạn thẳng MN.chứng minh rằng: PM+PN> 2 PI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Một cách khác để cm BĐT tam giác:
∆ABC có cạnh BC lớn nhất nên chân đường cao kẻ từ A phải nằm giữa B và C
=> HB + HC = BC
∆AHC vuông tại H => HC < AC
∆AHB vuông tại H => HB < AB
Cộng theo vế hai bất đẳng thức ta có:
HB + HC < AC + AB
Hay BC < AC + AB.
b) CMR: PM + PN > 2 PI:
Trên tia PI lấy Q sao cho PI = QI
Xét ΔMIQ và ΔNIP có :
+ PI = QI (cách vẽ)
+ \(\widehat{I_1}=\widehat{I_2}\) (đối đỉnh)
+ MI = NI (gt)
=> ΔMIQ = ΔNIP (c-g-c)
=> PN = QM
Áp dụng bất đẳng thức trong tam giác đối với ΔMPQ Ta có: MP+MQ>PQ ⇒ PM+PN>PI+QI ⇒ PM+PN>2PI
a) Hình mình vẽ hơi xấu nha
Kẻ đg AH vuông góc vs BC (H thuộc BC)
Có tg ABH vuông tại H, nên AB> BH(1)
Có tg AHC vuông tại H, nên AC> HC (2)
Mà BC = BH+ HC (3) Từ (1), (2), (3) suy ra :
BC< AB+ AC
2 cái còn lại giải tương tự nhan! Tại mk đang bận nên kh giải hết 3 cái đc. Thông cảm nhé!