Cho tam giác ABC vuông ở A (AB< AC), D là điểm trên cạnh AC sao cho góc DBC bằng 45 độ. Vẽ DE vuông góc với BC tại E. Tính số đo góc BAE?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là trung điểm BD. Kéo dài AO, cắt BC tại M.
Do \(\widehat{DBE}=45^o\Rightarrow\Delta BED\) vuông cân tại E, vậy thì \(\widehat{BOE}=45^o.\)
Do tam giác BED vuông tại E; O là trung điểm BD nên theo tính chất đường trung tuyến ứng với cạnh huyền, ta có:
\(OB=OD=OE\)(1)
Do tam giác BAD vuông tại A; O là trung điểm BD nên theo tính chất đường trung tuyến ứng với cạnh huyền, ta có:
\(OB=OD=OA\left(2\right)\)
Từ (1) và (2) ta có OA = OB = OD = OE.
Xét tam giác cân AOB, theo tính chất góc ngoài tam giác:
\(\widehat{BAO}+\widehat{ABO}=\widehat{BOM}\Leftrightarrow2\widehat{BAO}=\widehat{BOM}\)
Tương tự : \(2\widehat{OAE}=\widehat{MOE}\)
Vậy nên \(2\left(\widehat{BAO}+\widehat{OAE}\right)=\widehat{BOM}+\widehat{MOE}\)
\(\Leftrightarrow2\widehat{BAE}=\widehat{BOE}=90^o\Rightarrow\widehat{BAE}=45^o.\)