giải giúp mk vs mk sắp thi rùi!!!
1. a. Cho P=\(\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+3}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{3\sqrt{z}}{\sqrt{xz}+3\sqrt{z}+3}\) và xyz =9. Tính \(\sqrt{10P-1}\)
b. Cho x,y,z >0 thỏa mãn: x+y+z + \(\sqrt{xyz}\) =4 . Tính B= \(\sqrt{x\left(4-y\right)\left(4-z\right)}+\sqrt{y\left(4-z\right)\left(4-x\right)}+\sqrt{z\left(4-x\left(4-y\right)\right)}\)
2. a. giải phương trình \(\dfrac{x^2}{\left(x+2\right)^2}+3=3x^2-6x\)
b. \(\left\{{}\begin{matrix}x^2+y^2+xy+1=2x\\x\left(x+y\right)^2+x-2=2y^2\end{matrix}\right.\)
3. a.Tìm tất cae các nghiệm nguyên của phương trình \(x^2+x+2y^2+y=2xy^2+xy+3\)
b. CMR: \(a^3_1+a^3_2+a^3_3+....+a^3_n\) chia hết cho 3 biết \(a_1,a_2,a_3,...,a_n\) là các chữ số của \(2019^{2018}\)
4. Cho tam giác MNP có 3 góc M, N, P nhọn, nội tiếp đường tròn tâm O bán kính R. Gọi Q là trung điểm của NP và các đường cao MD, NE, PF của tam giác MNP cắt nhau tại H.
a. MH =2OQ B. Nếu MN+MP = 2NP thì sin N+ sin P = 2sinM c. ME.FH +MF .HE = \(R^2\sqrt{2}\) biết NP = \(R\sqrt{2}\) 5. Cho a,b,c dương thỏa mãn \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=3\) . Tìm GTNN của P= \(\dfrac{ab^2}{a+b}+\dfrac{bc^2}{b+c}+\dfrac{ca^2}{c+a}\)