chứng minh m.n.(m^2.n^2) chia hết cho 6 với mọi m;n thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét: với mọi a thuộc Z
\(a\left(a^2-1\right)=\left(a-1\right).a.\left(a+1\right)\)chia hết cho 3 và chia hết cho 2
mà (3, 2)=1
=> \(a\left(a^2-1\right)\)chia hết cho 6 (1)
Với mọi m, n thuộc Z
\(m^3n-mn^3=mn\left(m^2-n^2\right)=mn\left[\left(m^2-1\right)-\left(n^2-1\right)\right]=mn\left(m^2-1\right)-mn\left(n^2-1\right)\)
Từ (1) => \(m\left(m^2-1\right)⋮6,n\left(n^2-1\right)⋮6\)=> \(m^3n-mn^3⋮6\)với mọi m, n thuộc Z
a) \(x\left(x^2-2x\right)+\left(x-2x\right)=x^2\left(x-2\right)+x\left(x-2\right)=\left(x-2\right)\left(x^2+x\right)⋮x-2\forall x,y\in Z\)
b) \(x^3y^2-3yx^2+xy=xy\left(x^2y-3x+1\right)⋮xy\forall x,y\in Z\)
c) \(x^3y^2-3x^2y^3+xy^2=xy^2\left(x^2-3xy+1\right)⋮\left(x^2-3xy+1\right)\forall x,y\in Z\)
\(n^2\)- n = nn - n.1 = n . ( n - 1)
Mà n và n-1 là 2 số tự nhiên liên tiếp hay n và n-1 là một số lẻ hoặc một số chẵn
\(\Rightarrow\) n chia hết cho 2 hoặc (n-1) chia hêt cho 2
\(\Rightarrow\) n.(n-1) chia hết cho 2 hay \(n^2\)- n chia hết cho 2
TH1: n chia hết cho 3
=> n2 + n chia hết cho 3
Mà 2 chia 3 dư 2
=> n2 + n + 2 chia 3 dư 2
TH2: n chia 2 dư 1
=> n2 chia 3 dư 1
=> n2 + n chia 3 dư 2
Mà 2 chia 3 dư 2
=> n2 + n + 2 chia 3 dư 1
TH3: n chia 3 dư 2
=> n2 chia 3 dư 1
=> n2 + n chia hết cho 3
Mà 2 chia 3 dư 2
=> n2 + n + 2 chia 3 dư 2
KL: Vậy với mọi số nguyên n thì n2 + n + 2 không chia hết cho 3 (đpcm)
mk thấy bn nên xem lại đề đi. nếu n=1 thì \(6^{2n}+19^n-2^{n+1}\) ko chia hết cho 17
62n+19n-2n+1=36n+19n-2n2=(36n-2n)+(19n-2n)=34k+17j chia het 17
vay bt chia het 17
Đặt \(A=n^6+n^4-2n^2=n^2(n^4-n^2-2)\)
\(=n^2(n^4-1+n^2-1)\)
\(=n^2\left[(n^2-1)(n^2+1)+n^2-1\right]\)
\(=n^2(n^2-1)(n^2+2)\)
\(=n\cdot n(n-1)(n+1)(n^2+2)\)
+ Nếu n chẵn ta có n = 2k \((k\in N)\)
\(A=4k^2(2k-1)(2k+1)(4k^2+2)=8k^2(2k-1)(2k+1)(2k^2+1)\)
\(\Rightarrow A⋮8\)
+ Nếu n lẻ ta có n = 2k + 1 \((k\in N)\)
\(A=(2k+1)^2\cdot2k(2k+2)(4k^2+4k+1+2)\)
\(=4k(k+1)(2k+1)^2(4k^2+4k+3)\)
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp
\(\Rightarrow A⋮8\)
Do đó A chia hết cho 8 với mọi \(n\in N\)
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72.
* Nếu n không chia hết cho 3 thì \(n^2\) là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).
Suy ra \(n^2+2\) chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72.
Vậy A chia hết cho 72 với mọi n \(\in N\)
Chúc bạn học tốt :>
Với mọi số tự nhiên n.
Ta có: \(n^2+n+1=n\left(n+1\right)+1\)
Do n; n + 1 là hai số tự nhiên liên tiếp
=> n ( n + 1) chia hết cho 2.
=> n ( n+ 1) + 1 không chia hết chia hết cho 2
=> \(n^2+n+1\)không chia hết cho 2
=> \(n^2+n+1\) không chia hết cho 4.
Giả sử như mệnh đề trên đúng :
n^2+1 chia hết cho 4
* Nếu n chẵn : n = 2k , k thuộc N
=> n^2 +1 = 4k^2 +1 k chia hết cho 4
* nếu n lẻ : n = 2k + 1
=> n^2 +1 = 4k^2 +4k +2
=> n^2 +1 = 4k(k+1)+2
k , k +1 là 2 số tự nhiên liên tiếp
=> k(k+1) chia hết cho 2
=> 4k(k+1)chia hết cho 4
=> 4k(k+1)+2 chia cho 4 , dư 2
=> 4k (k+1)+2 k chia hết cho 4
Với n=1 thì 1^3+2*1=3 chia hết cho 3
Với n>1 thì Giả sử n^3+2n chia hết cho 3
Chúng ta cần chứg minh (n+1)^3+2(n+1) chia hết cho 3
\(A=\left(n+1\right)^3+2\left(n+1\right)\)
\(=n^3+3n^2+3n+1+2n+2\)
=n^3+3n^2+5n+3
=n^3+2n+3n^2+3n+3n+3
=n^3+2n+3(n^2+n+n+1) chia hết cho 3
=>ĐPCM
Ta có : m.n( m2.n2 )
= m.n [( m2 - 1 ) - ( n2 - 1)]
= m( m2 - 1 )n - mn( n2 - 1 )
= ( m - 1 )m( m + 1 )n - m( n - 1 )n( n + 1 )
Ta thấy: * ( m - 1) ; m và ( m + 1) là ba số nguyên liên tiếp
=> ( m - 1 )m( m + 1 ) chia hết cho 6
=> ( m - 1 )m ( m + 1 )n chia hết cho 6 (1)
* ( n - 1) ; n ; ( n + 1 ) là ba số nguyên liên tiếp
=> ( n - 1)n( n + 1 ) chia hết cho 6
=> m( n - 1 )n( n + 1 ) chia hết cho 6 (2)
Từ (1) và (2) suy ra : ( m - 1)m( m + 1)n - m( n - 1)n( n + 1 ) chia hết cho 6
Vậy m.n( m2.n2 ) chia hết cho 6 (đpcm)
Hok tốt !
Em kiểm tra lại đề và có thể tham khảo 1 cách giải ( lớp 7 có thể hiểu):
Câu hỏi của Luong Ngoc Quynh Nhu - Toán lớp 8 - Học toán với OnlineMath