Tìm nghiệm nguyên của phương trình 11x + 7y = 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sao bn ko ra sớm hơn nhỉ
thầy toán mới ra bài này làm bài khó cuối cùng cho lớp mik
Đặt phương trình trên là (1)
Ta thấy 120 và 18y đều chia hết cho 6. Nên \(11x⋮6\Leftrightarrow x⋮6\) (vì 11 và 6 là hai số nguyên tố cùng nhau)
Đặt \(x=6t\left(t\inℤ\right)\).Thay vào phương trình (1) được:
\(11.6t+6.3y=120\Leftrightarrow11t+3y=\frac{120}{6}=20\)
Suy ra \(3y=20-11t\Leftrightarrow y=\frac{20-11t}{3}\)
Vậy \(\hept{\begin{cases}x=6t\\y=\frac{20-11t}{3}\end{cases}}\) (t nguyên, sao cho \(20-11t⋮3\))
chac lam the nay a, x-3y=5
=>x=5+3y
=>y=x-5/3
vậy nghiêm nguyên của pt la x;y = 5+3y ; y=x-5 /3 voi x,y thuoc Z b,c tuong tu
11x + 7y = 5
<=>11x = 5-7y <=> x = \((5-7y)/11\) Rồi tự làm tiếp nha 0 = x⁴ - 2y⁴ - x²y² - 4x² - 7y² - 5
= (x⁴ + x²y² + x²) - (2x²y² + 2y⁴ + 2y²) - (5x² + 5y² + 5)
= x²(x² + y² + 1) - 2y²(x² + y² + 1) - 5(x² + y² + 1)
= (x² - 2y² - 5)(x² + y² + 1)
<=> x² - 2y² - 5 = 0
<=> x² - 5 = 2y²
Đến đây thấy rằng x² - 5 chẵn => x = 2a + 1 => x² - 5 = 4a² + 4a - 4
=> 2a² + 2a - 2 = y² => y = 2b => a² + a - 1 = 2b² <=> a(a + 1) = 2b² + 1
Do a(a + 1) luôn là số nguyên chẵn (vì a và a + 1 là 2 số nguyên liên tiếp) mà 2b² + 1 luôn lẻ => pt không có nghiệm nguyên
--------… ∆ ∠ ∡ √ ∛ ∜ x² ⁻¹ ∫ π × ∵ ∴ | | , ⊥,∈∝ ≤ ≥− ± , ÷ ° ≠ → ∞, ≡ , ≅ , ∑,∪,¼ , ½ , ¾ , ≈ , [-b ± √(b² - 4ac) ] / 2a Σ Φ Ω α β γ δ ε η θ λ μ π ρ σ τ φ ω ё й½ ⅓ ⅔ ¼ ⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁼ ⁽ ⁾ ⁿ ₁ ₂ ₃₄₅ ₆ ₇ ₈ ₉ ₊ ₋ ₌ ₍ ₎ ∊ ∧ ∏ ∑ ∠ ,∫ ∫ ψ ω Π∮ ∯ ∰ ∇ ∂ • ⇒ ♠ ★ ✰
ta có 11x+7y=5
y=\(\frac{5-11x}{7}=1-x-\frac{2+4x}{7}\)
đặt \(\frac{2+4x}{7}=t\)
=>x=\(\frac{7t-2}{4}\)
thế x,y vào pt 11x+7y=5
roi giai ra
tick nha