K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2021

\(a,A=x-4\sqrt{x+9}=\left(x+9-4\sqrt{x+9}+4\right)-13\\ A=\left(\sqrt{x+9}-2\right)^2-13\ge-13\\ A_{min}=-13\Leftrightarrow x+9=4\Leftrightarrow x=-5\\ b,B=x-3\sqrt{x-10}=\left(x-10-3\sqrt{x-10}+\dfrac{9}{4}\right)+\dfrac{31}{4}\\ B=\left(\sqrt{x-10}+\dfrac{9}{4}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\\ B_{min}=\dfrac{31}{4}\Leftrightarrow x-10=\dfrac{81}{16}\Leftrightarrow x=\dfrac{241}{16}\\ c,C=x-\sqrt{x+1}=\left(x+1-\sqrt{x+1}+\dfrac{1}{4}\right)-\dfrac{5}{4}\\ C=\left(\sqrt{x+1}-\dfrac{1}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\\ C_{min}=-\dfrac{5}{4}\Leftrightarrow x+1=\dfrac{1}{4}\Leftrightarrow x=-\dfrac{3}{4}\)

\(d,D=x+\sqrt{x+2}=\left(x+2+\sqrt{x+2}+\dfrac{1}{4}\right)-\dfrac{9}{4}\\ D=\left(\sqrt{x+2}+\dfrac{1}{4}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\\ D_{min}=-\dfrac{9}{4}\Leftrightarrow\sqrt{x+2}=-\dfrac{1}{4}\Leftrightarrow x\in\varnothing\)

Vậy dấu \("="\) ko xảy ra

a: \(A=x-4\sqrt{x}+9\)

\(=\left(\sqrt{x}-2\right)^2+5\ge5\forall x\)

Dấu '=' xảy ra khi x=4

b: \(B=x-3\sqrt{x}-10\)

\(=x-2\cdot\sqrt{x}\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{49}{4}\)

\(=\left(\sqrt{x}-\dfrac{3}{2}\right)^2-\dfrac{49}{4}\ge-\dfrac{49}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{9}{4}\)

15 tháng 12 2016

Đề là như thế này à bạn

Tìm GTNN của \(\frac{x^2+2}{\sqrt{x^2}+1}\)

21 tháng 1 2018

\(F=\left|x\right|+\left|x+2\right|=\left|-x\right|+\left|x+2\right|\ge\left|-x+x+2\right|=2\)(Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\))Dấu "=" xảy ra \(\Leftrightarrow-x\left(x+2\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}-x\ge0\\x+2\ge0\end{cases}}\\\hept{\begin{cases}-x\le0\\x+2\le0\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x\le0\\x\ge-2\end{cases}\Rightarrow x=0;-1;-2}\\\hept{\begin{cases}x\ge0\\x\le-2\end{cases}\Rightarrow x\in\varnothing}\end{cases}}\)

Vậy x = 0;-1;-2

21 tháng 1 2018

cái chỗ giải -x(x+2) >=0 bạn tự giải làm 2 trường hợp: (-x>=0 và x+2>=0) hoặc (-x<=0 và x+2<=0)