tìm p/s a/b = 3/5 và a mũ 3 + b mũ 3 = 1216
b)
Chứng minh rằng với mọi số tự nhiên n thì (n+1)(n+2)....(n+n) chia hết cho n mũ 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{n+1}+3^{n+2}+3^{n+3}\)
\(=3^{n+1}\left(1+3+3^2\right)\)
\(=3^{n+1}.13⋮13\forall n\inℕ\)
Bài 1:
a,\(A=3+3^2+3^3+...+3^{2010}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)
\(=3.40+...+3^{2007}.40\)
\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)
Vì A chia hết cho 40 nên chữ số tận cùng của A là 0
b,\(A=3+3^2+3^3+...+3^{2010}\)
\(3A=3^2+3^3+...+3^{2011}\)
\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)
\(2A=3^{2011}-3\)
\(2A+3=3^{2011}\)
Vậy 2A+3 là 1 lũy thừa của 3
a) Số số hạng là : ( 2014 - 4 ) : 3 + 1 = 671
S là : ( 2014 + 4 ) x 671 : 2 = 677039
b) Có nếu n là số chẵn \(\Rightarrow n⋮2\Rightarrow n\cdot\left(n+2013\right)⋮2\)
Nếu n là số lẻ \(\Rightarrow n+2013\)là số chẵn chia hết cho 2 \(\Rightarrow n\cdot\left(n+2013\right)⋮2\)
Vậy \(n\cdot\left(n+2013\right)\)luôn luôn chia hết cho 2 với mọi n ( ĐPCM )
c) \(M=2+2^2+2^3+...+2^{20}\)
\(2M=2\cdot\left(2+2^2+2^3+...+2^{20}\right)\)
\(2M=2^2+2^3+...+2^{21}\)
\(2M-M=2^{21}-2\)
Mà cứ 5 thừa số 2 thì số cuối của \(2^{21}\) sẽ lặp lại
\(\Rightarrow2^{21}\)có tận cùng là 2
\(\Rightarrow2^{21}-2\)có tận cùng là 0 chia hết cho 5
\(\Rightarrow M⋮5\)
Bài 1:
Giải :
Ta có: \(E=5+5^2+5^3+5^4+...+5^{97}+5^{98}+5^{99}+5^{100}\) \(\Leftrightarrow E=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{97}+5^{98}\right)+\left(5^{99}+5^{100}\right)\)
\(\Leftrightarrow E=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{97}.\left(1+5\right)+5^{99}.\left(1+5\right)\)
\(\Leftrightarrow E=5.6+5^3.6+...+5^{97}.6+5^{99}.6\)
\(\Leftrightarrow E=6.\left(5+5^3+...+5^{97}+5^{99}\right)\)
\(\Rightarrow E⋮6\)
Do \(E⋮6\)nên \(E\div6\)dư 0
Vậy \(E\div6\)có số dư bằng \(0\)
Bài 2:
Giải :
Ta có: \(n.\left(n+2\right).\left(n+7\right)\)
\(=\left(n^2+2n\right).\left(n+7\right)\)
\(=n^3+2n^2+7n^2+14n\)
\(=n^3+9n^2+14n\)
\(=n.\left(n^2+9n+14\right)\)
chiu thui, ko biet lam