K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2021

MN ƠI GIÚP MÌNH VỚI MÌNH CẦN GẤP

\(A=\dfrac{6^3+3\cdot6^2+3^3}{13}\)

\(=\dfrac{3^3\cdot8+3^3\cdot4+3^3}{13}\)

=27

 

2 tháng 10 2021

GIÚP MÌNH VỚI MN ƠI

\(C=\dfrac{6^3+3\cdot6^2+3^3}{13}=\dfrac{3^3\cdot8+3^3\cdot4+3^3}{13}=27\)

\(=\dfrac{5^3\left(2^3+2+1\right)}{55}-\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)

\(=5^2-\dfrac{2^{12}\cdot3^{10}\cdot\left(1+5\right)}{2^{11}\cdot3^{11}\left(2\cdot3-1\right)}=25-\dfrac{2}{3}\cdot\dfrac{6}{5}\)

=25-4/5

=24,2

3 tháng 8 2018

Bài 1:

\(a)\dfrac{20^5.5^{10}}{100^5}=\dfrac{20^5.5^5.5^5}{100^5}=\dfrac{100^5.3125}{100^5}=3125\)

3 tháng 8 2018

2.

a)A có 36 sô hạng , chia A thành 18 nhóm , mỗi nhóm có 2 số hạng .

Ta có : A = \(\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{35}+3^{36}\right)\)

\(A=3.\left(1+3\right)+3^3.\left(1+3\right)+...+3^{35}.\left(1+3\right)\)

\(A=3.4+3^3.4+...+3^{35}.4\)

\(A=4.\left(3+3^3+...+3^{35}\right)\)

Vậy A chia hết cho 4 .

b)Chia A thành 13 nhóm mỗi nhóm có 3 số hạng

Ta có : \(A=\left(3+3^2+3^3\right)+...+\left(3^{34}+3^{35}+3^{36}\right)\)

\(A=3.\left(1+3+9\right)+...+3^{34}.\left(1+3+9\right)\)

A=\(3.13+...+3^{34}.13\)

A= \(13.\left(3+..+3^{34}\right)\)

Vậy A chia hết cho 13

c) Tương tự như câu a và câu b

a: \(A=\dfrac{5^2\cdot3^{11}\cdot2^{11}\cdot2^8+3^2\cdot2^2\cdot2^{12}\cdot3^6\cdot3^2\cdot5^2}{2\cdot2^{12}\cdot3^{12}\cdot2^4\cdot5^4-3^8\cdot960^3}\)

\(=\dfrac{5^2\cdot3^{11}\cdot2^{19}+3^{10}\cdot2^{14}\cdot5^2}{2^{17}\cdot3^{12}\cdot5^4-3^{11}\cdot2^{18}\cdot5^3}\)

\(=\dfrac{5^2\cdot2^{14}\cdot3^{10}\left(3\cdot2^5+1\right)}{2^{17}\cdot3^{11}\cdot5^3\left(3\cdot5-2\right)}=\dfrac{1}{5}\cdot\dfrac{1}{8}\cdot\dfrac{1}{10}\cdot\dfrac{97}{13}=\dfrac{97}{5200}\)

b: \(B=\dfrac{2^{12}\cdot3^{10}+2^9\cdot3^9\cdot2^3\cdot3\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)

\(=\dfrac{2^{12}\cdot3^{10}\cdot\left(1+5\right)}{2^{11}\cdot3^{11}\left(2\cdot3-1\right)}=\dfrac{2}{3}\cdot\dfrac{6}{5}=\dfrac{12}{15}=\dfrac{4}{5}\)

13 tháng 3 2021

a) \(\dfrac{2727-101}{3.303+404}=\dfrac{2626}{909+404}=\dfrac{2626}{1313}=2\)

b) \(\dfrac{8.9-4.15}{12.7-180}=\dfrac{72-60}{84-180}=\dfrac{12}{-96}=\dfrac{-1}{8}\)

c) \(\dfrac{-19}{3^2.7.11}=\dfrac{-19}{9.7.11}=\dfrac{-19}{63.11}=\dfrac{-19}{693}\)

d) \(\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\dfrac{2^{12}.3^{10}+120.6^9}{2^{12}.3^{12}-6^{11}}=\dfrac{2^2.6^{10}+20.6.6^9}{6^{12}-6^{11}}=\dfrac{4.6^{10}+20.6^{10}}{6^{11}\left(6-1\right)}=\dfrac{\left(4+20\right).6^{10}}{5.6^{11}}=\dfrac{24}{30}=\dfrac{4}{5}\)

13 tháng 3 2021

có cách nào khác nữa ko bạnngaingung

10 tháng 7 2018

E = \(\frac{\left(2^2\right)^6.\left(3^2\right) ^5+\left(2.3\right)^9.2^3.3.5}{-\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)

E  =  \(\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{-2^{12}.3^{12}-2^{11}.3^{11}}\)

E = \(\frac{2^{12}.3^{10}+2^{13}.3^{10}.5}{-2^{11}.3^{11}.\left(2.3+1\right)}\)

E = \(\frac{2^{12}.3^{10}.\left(1+5\right)}{-2^{11}.3^{11}.7}\)

E = \(\frac{2^{12}.3^{10}.6}{-2^{11}.3^{11}.7}\)

E=\(\frac{-2^{11}.\left(-2\right).3^{10}.6}{-2^{11}.3^{10}.3.7}\)

E = \(\frac{-2.6}{3.7}=-\frac{4}{7}\)

Vậy E = -4/7 

Ý F bn lm tương tự nha 

13 tháng 7 2018

thank bn nha

23 tháng 8 2017

a) 3125

b) -27

c) \(\frac{46}{5}\) hay 9,2

23 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

4 tháng 9 2020

a)\(\frac{6^3+3\cdot6^2+3^3}{-13}=\frac{3^3\cdot2^3+3^3\cdot2^2+3^3}{-13}=\frac{3^3\left(2^3+2^2+1\right)}{-13}=-3^3=-27\)

b) \(\frac{2^3+3\cdot2^6-4^3}{2^3+3^2}=\frac{8+3\cdot64-64}{8+9}=\frac{8+192-64}{17}=\frac{136}{17}=8\)

c) \(\frac{4^6\cdot9^5+6^9\cdot120}{8^4\cdot3^{12}-6^{11}}=\frac{2^{12}\cdot3^{10}+2^9\cdot3^9\cdot2^3\cdot3\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}=\frac{2^{11}\cdot3^{10}\left(2+2\cdot5\right)}{2^{11}\cdot3^{10}\cdot\left(2\cdot3^2-3\right)}=\frac{12}{18-3}=\frac{12}{15}\)

d) \(\frac{5^5\cdot20^3-5^4\cdot20^3+5^7\cdot4^5}{\left(20+5\right)^3\cdot4^5}=\frac{5^5\cdot20^3-5^4\cdot20^3+20^3\cdot20^2\cdot5^2}{5^6\cdot4^5}=\frac{20^3\left(5^5-5^4+5^4\cdot4^2\right)}{20^5\cdot5}\)\(=\frac{5^4\left(5-1+16\right)}{20^2\cdot5}=\frac{5^4\cdot20}{20^2\cdot5}=\frac{5^3}{20}=\frac{5^3}{5\cdot4}=\frac{25}{4}\)

                                Bài giải

a)\(\frac{6^3+3\cdot6^2+3^3}{-13}=\frac{3^3\cdot2^3+3^3\cdot2^2+3^3}{-13}=\frac{3^3\left(2^3+2^2+1\right)}{-13}=-3^3=-27\)

b) \(\frac{2^3+3\cdot2^6-4^3}{2^3+3^2}=\frac{8+3\cdot64-64}{8+9}=\frac{8+192-64}{17}=\frac{136}{17}=8\)

c) \(\frac{4^6\cdot9^5+6^9\cdot120}{8^4\cdot3^{12}-6^{11}}=\frac{2^{12}\cdot3^{10}+2^9\cdot3^9\cdot2^3\cdot3\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}=\frac{2^{11}\cdot3^{10}\left(2+2\cdot5\right)}{2^{11}\cdot3^{10}\cdot\left(2\cdot3^2-3\right)}=\frac{12}{18-3}=\frac{12}{15}\)

d) \(\frac{5^5\cdot20^3-5^4\cdot20^3+5^7\cdot4^5}{\left(20+5\right)^3\cdot4^5}=\frac{5^5\cdot20^3-5^4\cdot20^3+20^3\cdot20^2\cdot5^2}{5^6\cdot4^5}=\frac{20^3\left(5^5-5^4+5^4\cdot4^2\right)}{20^5\cdot5}\)\(=\frac{5^4\left(5-1+16\right)}{20^2\cdot5}=\frac{5^4\cdot20}{20^2\cdot5}=\frac{5^3}{20}=\frac{5^3}{5\cdot4}=\frac{25}{4}\)

\(=\dfrac{-2^{12}\cdot3^{10}-2^{12}\cdot3^{10}\cdot5}{-2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}=\dfrac{2^{12}\cdot3^{10}\cdot6}{2^{11}\cdot3^{11}\cdot7}=\dfrac{2\cdot6}{3\cdot7}=\dfrac{12}{21}=\dfrac{4}{7}\)