\(\sqrt[3]{X+1}+\sqrt[3]{X+2}+\sqrt[3]{X+3}=0\)
Giải phương trình vô tỉ này hộ mk vs. mk cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A, đk tự tìm
\(\sqrt{x^2+4x+3}=x-2\)
\(\Leftrightarrow x^2+4x+3-x^2+4x-4=0\)
\(\Leftrightarrow8x-1=0\)
\(\Leftrightarrow x=\frac{1}{8}\)
B, đk tự tìm
\(\Leftrightarrow\sqrt{4\left(x+5\right)}-3\sqrt{x+5}+\frac{4}{3}\sqrt{9\left(x+5\right)}\)=6
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow\sqrt{x+5}\left(2-3+4\right)=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow\sqrt{x+5}=2\)
\(\Leftrightarrow x+5=4\)
\(\Leftrightarrow x=-1\)
ĐKXĐ: \(x\ge3\)
\(\Leftrightarrow\sqrt{x-3}=2\sqrt{x^2-9}\)
\(\Leftrightarrow x-3=4\left(x-3\right)\left(x+3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\4\left(x+3\right)=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{11}{4}\left(loại\right)\end{matrix}\right.\)
\(A=\left(\frac{2x+1}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}-\frac{\sqrt{x}}{\left(x+\sqrt{x}+1\right)}\right).\left(\frac{\sqrt{x}.\left(3+x\right)}{-2x}-\sqrt{x}\right) \)
\(A=\left(\frac{2x+1-\sqrt{x}.\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}\right).\left(\frac{3+x}{-2\sqrt{x}}-\sqrt{x}\right)\)
\(A=\left(\frac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}\right).\left(\frac{3+x+2x}{-2\sqrt{x}}\right)\)
\(A=\left(\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}\right).\left(\frac{3x+3}{-2\sqrt{x}}\right)\)
\(A=\frac{1}{\sqrt{x}-1}.\frac{3.\left(x+1\right)}{-2\sqrt{x}}\)
\(A=\frac{3x+3}{-2\sqrt{x}.\left(\sqrt{x}+1\right)}\)
P/s: hình như đề sai hay sao á, thường thì người ta không cho mẫu là 2 số trừ được như ( x - 3x ) đâu
\(\hept{\begin{cases}x^3-6x^2y+9xy^2-4y^3=0\left(1\right)\\\sqrt{x-y}+\sqrt{x+y}=2\left(2\right)\end{cases}}\)
ĐKXĐ: \(x\ge y\ge0\)
ta có: (1)\(\Leftrightarrow\left(x^3-y^3\right)-3y^3-9x^2y+3x^2y+9xy^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+3y\left(x^2-y^2\right)-9xy\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+3y\left(x+y\right)-9xy\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-5xy+4y^2\right)=0\)
\(\orbr{\begin{cases}x=y\\x^2-5xy+4y^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=y\\\left(x-y\right)\left(x-4y\right)=0\end{cases}}}\)\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=4y\end{cases}}\)
* Thay x=y vào phương trình (2), ta được: \(\sqrt{y-y}+\sqrt{2y}=2\Leftrightarrow y=2\Rightarrow x=y=2\)
* thay x=4y vào phương trình (2), ta được: \(\sqrt{4y-y}+\sqrt{4y+y}=2\)
\(\Leftrightarrow y=8-2\sqrt{15}\)\(\Rightarrow x=32-8\sqrt{15}\)
Vậy.......
\(A=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)\(A=\dfrac{2x-6\sqrt{x}+x+\sqrt{x+}3\sqrt{x}+3+3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)\(A=\dfrac{3x-13\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)