Cho phân số: A=\dfrac{n +5}{n-3}A=n−3n+5.
Có bao nhiêu số nguyên nn để AA là số nguyên?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để A nguyên thì \(2n+1\inƯ\left(10\right)\)
mà n nguyên
nên \(2n+1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{0;-1;2;-3\right\}\)
b: B nguyên thì 3n+5-5 chia hết cho 3n+5
=>\(3n+5\inƯ\left(-5\right)\)
mà n nguyên
nên \(3n+5\in\left\{-1;5\right\}\)
=>n=-2 hoặc n=0
c: Để C nguyên thì 4n-6+16 chia hết cho 2n-3
=>\(2n-3\in\left\{1;-1\right\}\)
=>\(n\in\left\{2;1\right\}\)
a) Vì -3; n- 1 nên M là phân số nếu n – 1 khác 0 => n khác 1
b) Với n = 3 => M = − 3 3 − 1 = − 3 2
Với n = 5 => M = − 3 5 − 1 = − 3 4 và n = -4 => M = − 3 − 4 − 1 = − 3 − 5
\(\dfrac{5}{3n-1}\in Z\Rightarrow3n-1=Ư\left(5\right)\)
\(\Rightarrow\left[{}\begin{matrix}3n-1=-5\\3n-1=-1\\3n-1=1\\3n-1=5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}n=-\dfrac{4}{3}\left(ktm\right)\\n=0\\n=\dfrac{2}{3}\left(ktm\right)\\n=2\end{matrix}\right.\)
Vậy \(n=\left\{0;2\right\}\)