cho hình thang abcd có cạnh bên ad vuông góc với 2 đáy. ab = 2/3 cd. người ta mở rộng abcd về phía bc được hình chữ nhật amcd. ac cắt db tại o, mo cắt bc tại i . so sánh bi và bc?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Xét ΔADC có OM//DC
nen OM/DC=AM/AD(1)
Xét ΔBDC có ON//DC
nên ON/DC=BN/BC(2)
Xét hình thag ABCD có MN//AB//CD
nên AM/AD=BN/BC(3)
Từ (1) (2)và (3) suy ra OM=ON
Bài 2:
Xét ΔADC có OM//DC
nen OM/DC=AM/AD(1)
Xét ΔBDC có ON//DC
nên ON/DC=BN/BC(2)
Xét hình thag ABCD có MN//AB//CD
nên AM/AD=BN/BC(3)
Từ (1) (2)và (3) suy ra OM=ON
a: góc ADB=90 độ-góc ABD
=góc CBD
b: Xét ΔABD vuông tại A và ΔBDC vuông tại B có
góc ABD=góc BDC
=>ΔABD đồng dạng vơi ΔBDC
a) Ta có:
+) M là trung điểm của AD và MN // CD
MN là đường trung bình của hình thang ABCD
N là trung điểm của BC
+) M là trung điểm của AB và ME // AB
ME là đường trung...
Gọi H là trung điểm DC.
Chứng minh HE// IF( vì cùng //BC)
=> HE vuông FK ( vì FK vuông IF)
Tương tự HF// EI( vì cùng //AD)
=> HF vuông EK( vì EK vuông IE)
Xét tam giác EFH có EK và FK là 2 đường cao nên K là trực tâm. Suy ra HK vuông FE mà FE //DC nên HK vuông DC tại H suy ra tam giác KDC cân tại K. Nên KD=KC
a: Xét ΔMCD có AB//CD
nên MB/MC=AB/CD=1/3
=>S ABM=1/3*S MAC
b: MA/MD=1/3
=>MA/MA+12=1/3
=>MA=6cm
Anh có thể làm theo cách của lớp 5 được không:) cách này e ko hiểu lắm:v