K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2016

Câu 1. bạn cm tam giác ABM bằng tg ECM suy ra góc BAM và CEM bằng nhau, AB bằng CE. mà AB nhỏ hơn AC nên CE nhỏ hơn AC. Xét tg ACE có CAE nhỏ hơn góc CEA. Suy ra góc CAE nhỏ hơn góc ABM.

Câu 2. cm tam giác ABD và EBD bằng nhau sra DE vuông góc với BC, AH//ED. Kéo dài DE Cắt AB tại K.cm 2 tam giác DEC và DAK bằng nhau. EC bằng AK. So sánh AK và EH bằng cách vẽ AM vuông góc với EK. Cm HE bằng AM. So sánh AM và AK trong tam giác vuông AMK có AM nhỏ hơn AK. Vậy HE nhỏ hơn EC. Chúc bạn học tốt.

7 tháng 5 2016

cảm ơn

Cao Minh nhiều nha

a: Xét ΔAHE vuông tại E và ΔAHI vuông tại I có

AH chung

\(\widehat{EAH}=\widehat{IAH}\)

Do đó: ΔAHE=ΔAHI

Xét ΔAHN có 

AE là đường cao

AE là đường trung tuyến

Do đó: ΔAHN cân tại A

b: Ta có: HN=2HE

HM=2HI

mà HE=HI

nên HN=HM

Xét ΔAHM có 

AI là đường cao

AI là đường trung tuyến

DO đó: ΔAHM cân tại A

=>AH=AM=AN

Ta có: AM=AN

HM=HN

Do đó: AH là đường trung trực của MN

12 tháng 5 2022

còn câu c bạn 

a: Xét ΔMAE và ΔMBE có 

MA=MB

\(\widehat{AME}=\widehat{BME}\)

ME chung

Do đó: ΔMAE=ΔMBE

b: Xét ΔMHE vuông tại H và ΔMKE vuông tại K có

ME chung

\(\widehat{HME}=\widehat{KME}\)

Do đó:ΔMHE=ΔMKE

Suy ra: EH=EK

c: Ta có: ΔMAB cân tại M

mà ME là đường trung tuyến

nên ME là đường cao

=>ΔEBI vuông tại E

28 tháng 2 2022

em cảm ơn ạ

16 tháng 3 2020

a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)

BC = 10; AB = 8 (Gt)

=> AC^2 = 10^2 - 8^2

=> AC^2 = 36

=> AC = 6 do AC > 0

b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)

BM = MC do M là trung điểm của BC(gt)

^BMA = ^DMC (đối đỉnh)

=> tam giác AMB = tam giác DMC (c-g-c)

=> ^ABM = ^MCD mà 2 góc này slt

=> AB // CD 

AB _|_ AC

=> CD _|_ AC 

c, xét tam giác ACE có : AH _|_ AE 

AH = HE

=> tam giác ACE cân tại C 

d, xét tam giác BMD và tam giác CMA có L BM = MC

AM = MD

^BMD = ^CMA

=> tam giác BMD = tam giác CMA (c-g-c)

=> BD = AC

AC = CE do tam giác ACE cân tại C (câu c)

=> BD = CE