Cho \(n\inℤ\).CMR: Nếu \(\left(n-1\right)^2< n< \left(n+1\right)^2\) thì n không là số chính phương.
Ai biết giúp mình với!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
\(=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
Đặt : \(n^2+3n=k\)\(\Rightarrow A=k\left(k+2\right)=k^2+2k\)
Ta có : \(\left(k+1\right)^2=\left(k+1\right)\left(k+1\right)\)
\(=k\left(k+1\right)+1\left(k+1\right)\)
\(=k^2+k+k+1=k^2+2k+1\)
Do : \(n\inℕ^∗\Rightarrow n^2+3n>0\)hay : \(k>0\)
\(\Rightarrow k^2+2k>k^2\)
Ta có : \(k^2< k^2+2k< k^2+2k+1\)
hay : \(k^2< k^2+2k< \left(k+1\right)^2\)
Do : \(k^2\)và \(\left(k+1\right)^2\)là hai số chính phương liên tiếp
\(\Rightarrow k^2+2k\)không phải là số chính phương
Mình quên không nói là đề bài yêu cầu chứng minh 2 bổ đề trên.
Đề sai thế n = 1 thì
\(\left(1-1\right)^2< 1< \left(1+1\right)^2\)
Giả sử n là số chính phương
vì: n là số nguyên >1 và \(\left(n-1\right)^2< n< \left(n+1\right)^2\)
nên: n=n^2.\(\Rightarrow n^2-n=0\Leftrightarrow n\left(n-1\right)=0\Leftrightarrow\orbr{\begin{cases}n-1=0\\n=0\end{cases}}\)
Mà: n>1 nên: n-1>0
và n>0 (vô lí) vậy n ko là số chính phương