Cho A = 1/11 + 1/12 + 1/13 +...+ 1/70
CMR : a) A> 4/3 ; b) A< 2,5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}+\frac{1}{12}\)
\(\frac{a}{b}=\left(1+\frac{1}{2}\right)+\left(\frac{1}{2}+\frac{1}{11}\right)+...+\left(\frac{1}{6}+\frac{1}{7}\right)\)
\(\frac{a}{b}=\frac{13}{1.2}+\frac{13}{2.11}+...+\frac{13}{6.7}\)
chọn mẫu chung
Thừa số phụ tương ứng k1,k2,k3,...,k6 ( 6 phân số )
\(\frac{a}{b}=\frac{13k_1}{1.2.3...12}+\frac{13k_2}{1.2.3...12}+...+\frac{13k_6}{1.2.3...12}\)
\(\frac{a}{b}=\frac{13.\left(k_1+k_2+k_3+...+k_6\right)}{1.2.3...12}\)
Vì tử số \(⋮\)13. Mẫu không chứa thừa số nguyên tố là 13
nên khi rút gọn phân số \(\frac{a}{b}\) và phân số tối giản thì a \(⋮\)13
Ta có :
n2 + n + 1 = n . ( n + 1 ) + 1
Vì n . ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên ⋮2 ⇒n . ( n + 1 ) + 1 là một số lẻ nên không chia hết cho 4
Vì n . ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9. Do đó n . ( n + 1 ) + 1 không có tận cùng là 0
hoặc 5 . Vì vậy, n2 + n + 1 không chia hết cho 5
P/s đùng để ý đến câu trả lời của mình
a có 60 số hạng, chia a thành 3 nhóm:(1/11+...+1/30)+(1/31+...+1/50)+(1/51+...+1/70)>1/30 nhân 20 +1/50 nhân 20 + 1/70 nhân 20= 104/21>28/21=4/3
cái còn lại thì chia thành 6 nhóm tương tự nhé, mình giải một nửa, nửa còn lại bạn tự giải sẽ giỏi hơn nhé hơn nhé
bạn ơi, giúp mình vs, mình đặt câu hỏi trên hoc24 ko được, bn chỉ mình dc ko
\(A=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{70}\)
\(A=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}\right)\)
\(+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}\right)\)
\(\Rightarrow A< \frac{1}{10}\cdot10+\frac{1}{20}\cdot10+\frac{1}{30}\cdot10+...+\frac{1}{60}\cdot10\)
\(A< 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{6}\)
\(A< 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{6}+\left(\frac{1}{4}+\frac{1}{5}\right)\)
\(A< 2+0,45< 2,5\)
\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}\)
\(A>\left(\frac{1}{20}+\frac{1}{20}+..+\frac{1}{20}\right)+\left(\frac{1}{30}+...+\frac{1}{30}\right)+...+\left(\frac{1}{70}+\frac{1}{70}+...+\frac{1}{70}\right)\)
\(A>\frac{1}{2}+\frac{1}{3}+..+\frac{1}{7}\)
\(A>\frac{223}{140}>\frac{4}{3}\)