Cho \(\frac{a}{b}=\frac{c}{d}\)voi b,d \(\ne\)0 . CMR : ( a+c )( b-d ) = ( a-c )( b+d ) !?!?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}\\ \Rightarrow\frac{a}{c}=\frac{b}{d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\left(\frac{a-b}{c-d}\right)^{2013}\left(1\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\left(\frac{a-b}{c-d}\right)^{2013}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\)
thiếu đề
phải không
sửa lại mới làm được
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) ms đúng đề nhé!
Câu hỏi của Học Online 24h - Toán lớp 7 - Học toán với OnlineMath
giải
Ta có : \(\hept{\begin{cases}2bd=c\left(b+d\right)\\a+c=2b\end{cases}}\)
\(\Rightarrow d\left(a+c\right)=c.\left(b+d\right)\)
\(\Rightarrow\frac{c}{d}=\frac{a+c}{b+d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{c}{d}=\frac{a+c}{b+d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Chúc bạn hoc tốt !!!
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
\(\Rightarrow VT=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\left(1\right)\)
\(\Rightarrow VP=\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\left(2\right)\)
Từ (1) và (2) =>Đpcm
Ta có: \(\frac{a+b}{b+c}=\frac{c+d}{d+a}.\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{b+c}{d+a}\)
\(\Rightarrow\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1.\)
\(\Rightarrow\frac{a+b}{c+d}+\frac{c+d}{c+d}=\frac{b+c}{d+a}+\frac{d+a}{d+a}.\)
\(\Rightarrow\frac{a+b+c+d}{c+d}=\frac{b+c+d+a}{d+a}\)
Nếu \(a+b+c+d\ne0.\)
\(\Rightarrow c+d=d+a\)
\(\Rightarrow c=a\left(đpcm1\right).\)
Nếu \(a+b+c+d=0\) thì hợp với đề.
\(\Rightarrow a+b+c+d=0\left(đpcm2\right).\)
Chúc bạn học tốt!
đặt a/b = c/d = k
=> a = bk và c = dk
thay vào ta được :
(bk + dk)(b - d)
= k(b + d)(b - d)
= k(b2 - d2) (1)
(a - c)(b + d)
= (bk - dk)(b + d)
= k(b - d)(b + d)
= k(b2 - d2) (2)
(1)(2) => (a + c)(b - d) = (a - c)(b + d)
những dạng này dùng dạng tổng quát nha anh/chị
rkjfjgjfdjfghjgj;gkgj
dkjfjghjgjhhdfh
khô bi