K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2019

đặt a/b = c/d = k

=> a = bk và c = dk

thay vào ta được :

(bk + dk)(b - d)

= k(b + d)(b - d)

= k(b2 - d2)               (1)

(a - c)(b + d)

= (bk - dk)(b + d)

= k(b - d)(b + d)

= k(b2 - d2)        (2)

(1)(2) => (a + c)(b - d) = (a - c)(b + d)

những dạng này dùng dạng tổng quát nha anh/chị

15 tháng 2 2019

rkjfjgjfdjfghjgj;gkgj

dkjfjghjgjhhdfh

khô bi

21 tháng 9 2016

25361

23 tháng 11 2019

\(\frac{a}{b}=\frac{c}{d}\\ \Rightarrow\frac{a}{c}=\frac{b}{d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\left(\frac{a-b}{c-d}\right)^{2013}\left(1\right)\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\left(\frac{a-b}{c-d}\right)^{2013}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\)

thiếu đề 

phải không

sửa lại mới làm được

13 tháng 6 2019

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) ms đúng đề nhé!

Câu hỏi của Học Online 24h - Toán lớp 7 - Học toán với OnlineMath

29 tháng 12 2019

giải

Ta có : \(\hept{\begin{cases}2bd=c\left(b+d\right)\\a+c=2b\end{cases}}\)

\(\Rightarrow d\left(a+c\right)=c.\left(b+d\right)\)

\(\Rightarrow\frac{c}{d}=\frac{a+c}{b+d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{c}{d}=\frac{a+c}{b+d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\) 

Chúc bạn hoc tốt !!!

13 tháng 10 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

\(\Rightarrow VT=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\left(1\right)\)

\(\Rightarrow VP=\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\left(2\right)\)

Từ (1) và (2) =>Đpcm

7 tháng 11 2019
https://i.imgur.com/z4bn8DU.jpg
7 tháng 11 2019

Ta có: \(\frac{a+b}{b+c}=\frac{c+d}{d+a}.\)

\(\Rightarrow\frac{a+b}{c+d}=\frac{b+c}{d+a}\)

\(\Rightarrow\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1.\)

\(\Rightarrow\frac{a+b}{c+d}+\frac{c+d}{c+d}=\frac{b+c}{d+a}+\frac{d+a}{d+a}.\)

\(\Rightarrow\frac{a+b+c+d}{c+d}=\frac{b+c+d+a}{d+a}\)

Nếu \(a+b+c+d\ne0.\)

\(\Rightarrow c+d=d+a\)

\(\Rightarrow c=a\left(đpcm1\right).\)

Nếu \(a+b+c+d=0\) thì hợp với đề.

\(\Rightarrow a+b+c+d=0\left(đpcm2\right).\)

Chúc bạn học tốt!