K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2019

mi thì cút đi nha

Sửa đề: Đường thẳng qua O song song với AB

Xét ΔAOB và ΔCOD có 

\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)

\(\widehat{BAO}=\widehat{DCO}\)(hai góc so le trong, AB//CD)

Do đó: ΔAOB\(\sim\)ΔCOD(g-g)

Suy ra: \(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{OA}{OB}=\dfrac{OC}{OD}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{OA}{OB}=\dfrac{OC}{OD}=\dfrac{OA+OC}{OB+OD}=\dfrac{AC}{BD}\)

\(\Leftrightarrow\dfrac{OC}{OD}=\dfrac{AC}{BD}\)

\(\Leftrightarrow\dfrac{CO}{CA}=\dfrac{DO}{DB}\)(1)

Xét ΔDAB có 

M∈AD(gt)

O∈BD(gt)

MO//AB(gt)

Do đó:\(\dfrac{DO}{DB}=\dfrac{MO}{AB}\)(Hệ quả của Định lí Ta lét)(2)

Xét ΔABC có 

O∈AC(gt)

N∈BC(gt)

ON//AB(gt)

Do đó: \(\dfrac{CO}{CA}=\dfrac{ON}{AB}\)(Hệ quả của Định lí Ta lét)(3)

Từ (1), (2) và (3) suy ra \(\dfrac{OM}{AB}=\dfrac{ON}{AB}\)

hay OM=ON(đpcm)

\(\Leftrightarrow OM+ON=MN=2\cdot ON\)
Xét ΔBCD có 

O∈BD(gt)

N∈BC(gt)

ON//DC(gt)

Do đó: \(\dfrac{ON}{CD}=\dfrac{BN}{BC}\)(Hệ quả của Định lí Ta lét)(4)

Xét ΔABC có 

O∈AC(gt)

N∈BC(gt)

ON//DC(gt)

Do đó: \(\dfrac{ON}{AB}=\dfrac{CN}{CB}\)(Hệ quả của Định lí Ta lét)

\(\Leftrightarrow\dfrac{ON}{AB}+\dfrac{ON}{CD}=\dfrac{BN}{BC}+\dfrac{CN}{BC}=1\)

\(\Leftrightarrow\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{1}{ON}=\dfrac{2}{2\cdot ON}=\dfrac{2}{MN}\)(đpcm)

6 tháng 7 2018

B C D A O F E

                                                           C/m

có BC//AD(gt)

=>BF//ED;FC//AE(F\(\in\)BC;E\(\in\)AD)

Giả sử E,O,F thẳng hàng với E là trung điểm của AD

Xét \(\Delta\)FOB và \(\Delta\)EOD có 

\(\widehat{FOB}=\widehat{EOD}\)(đối đỉnh)(1)

Có BF//ED=>\(\widehat{FBO}=\widehat{EDO}\)(so le trong)(2)

Từ (1) và (2)=>\(\Delta FOB~\Delta EOD\)(g.g)=>\(\frac{BF}{ED}=\frac{FO}{OE}\)(*)

Làm Tương tự với \(\Delta FOC\) và \(\Delta EOA\)=>\(\Delta FOC~\Delta EOA\)=>\(\frac{FC}{AE}=\frac{FO}{OE}\)(**)

=>\(\frac{BF}{ED}=\frac{FC}{AE}\)(@)

mà E là trung điểm của AD =>AE=ED(@@)

Từ (@) và (@@)

=> BF=FC=>F là trung điểm của BC

Vậy F là trung điểm BC, E là trung điểm AD thì  E,O,F thẳng hàng (đpcm)

6 tháng 7 2018

mik làm theo cách này chưa chắc đã đúng đâu nha bạn xem xem đúng không đã nha