Cho tam giác ABC có góc A=30 độ, góc B=40 độ. Tia phân giác của góc ngoài tại đỉnh A của tam giác ABC cắt BC tại E. Chứng minh rằng: AB+AC=BE ( Gợi ý: Trên tia đối của tia AB lấy điểm F sao cho AF=AC)
Ai đi ngang có lòng giúp mình gấp với ạ TT.TT
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xl ng ae ! vì mk ngu hình nên nhờ đến mạng giúp đỡ nên đã tìm đc https://h.vn/hoi-dap/tim-kiem?q=Cho+tam+gi%C3%A1c+ABC+c%C3%B3+tia+ph%C3%A2n+gi%C3%A1c+c%E1%BB%A7a+g%C3%B3c+B+c%E1%BA%AFt+AC+t%E1%BA%A1i+M+.+Tr%C3%AAn+tia+%C4%91%E1%BB%91i+c%E1%BB%A7a+tia+AB+l%E1%BA%A5y+%C4%91i%E1%BB%83m+E+sao+cho+BE+%3D+BC+.+Tr%C3%AAn+tia+%C4%91%E1%BB%91i+c%E1%BB%A7a+tia+BC+l%E1%BA%A5y+%C4%91i%E1%BB%83m+F+sao+cho+BF+%3D+AB+.+Ch%E1%BB%A9ng+minh+%3A++a+%29+C%C3%A1c+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+AF+%2C+BM+%2C+EC+song+song+v%E1%BB%9Bi+nhau+%3B++b+%29+N%E1%BA%BFu+BM+vu%C3%B4ng+g%C3%B3c+AC+th%C3%AC+AE+%3D+FC+%3B++c+%29+N%E1%BA%BFu+BM+vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+AC+v%C3%A0+ABC+%3D+90+%C4%91%E1%BB%99+th%C3%AC+AC+%3D+EC+%3D+EF+%3D+FA+.&subject=0
xin cảm phiền ng ae vào nhé ~ cảm ơn ng ae
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do dó: ΔBAD=ΔBED
=>DA=DE
b: Sửa đề: BD vuông góc với AE
Ta có: BA=BE
DA=DE
Do đó; BD là trung trực của AE
=>BD vuông góc với AE
c: Xét ΔBFC có BA/AF=BE/EC
nên AE//CF
a) Xét t/giác ABC vuông tại A có góc B = 600 => góc C = 900 - 600 = 300
Ta có: \(\widehat{B1}=\widehat{B2}=\widehat{\frac{B}{2}}=\frac{60^0}{2}=30^0\)
=> \(\widehat{C}=\widehat{B2}\) = >t/giác BEC cân tại E => EB = EC
b) Trên tia đối của tia AB lấy điểm M sao cho AM = AB
Xét t/giác ABC và t/giác AMC
có: AB = AM
\(\widehat{BAC}=\widehat{MAC}=90^0\) (gt)
AC : chung
=> t/giác ABC = t/giác AMC (c.g.c)
=> BC = CM (2 cạnh t/ứng)
=> t/giác ACM cân tại C có \(\widehat{B}=60^0\)
=> t/giác ACM đều
=> BC = CM = BM
Mà BM = AB + AM = 2AB (AB = AM)
=> BC = 2AB => AB = 1/2BC
c) Xét t/giác ABC vuông tại A có AN là đường trung tuyến
=> AM = BN = NC = 1/2BC
=> t/giác ANC cân tại N
=> AN = NC