CHo x,y >0thỏa mãn điều kiện (\(\left(\sqrt{x}+1\right).\left(\sqrt{y}+1\right)\ge9\)
Tìm GTNN của P=\(\frac{x^2}{y}+\frac{y^2}{x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3
MInA=3<=>x=y=z=1
b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)
a) +) Điều kiện : x \(\ge\) 0 ; y \(\ge\) 0 ; y \(\ne\) 1 ; x; y không đồng thời bằng 0
+) \(P=\frac{x\left(\sqrt{x}+1\right)-y\left(1-\sqrt{y}\right)-xy\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}=\frac{x\sqrt{x}+x-y+y\sqrt{y}-xy\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}\)
\(P=\frac{\left(x\sqrt{x}+y\sqrt{y}\right)+\left(x-y\right)-xy\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x+y-\sqrt{xy}\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)-xy\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}\)
\(P=\frac{x+y-\sqrt{xy}+\sqrt{x}-\sqrt{y}-xy}{\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}=\frac{\left(x+\sqrt{x}\right)+\left(y-xy\right)-\left(\sqrt{xy}+\sqrt{y}\right)}{\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}=\frac{\left(1+\sqrt{x}\right)\sqrt{x}+y\left(1-x\right)-\sqrt{y}\left(\sqrt{x}+1\right)}{\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}\)
\(P=\frac{\left(1+\sqrt{x}\right)\left(\sqrt{x}+y-y\sqrt{x}-\sqrt{y}\right)}{\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-y\sqrt{x}\right)+\left(y-\sqrt{y}\right)}{\left(1-\sqrt{y}\right)}=\frac{\sqrt{x}\left(1-\sqrt{y}\right)\left(1+\sqrt{y}\right)-\sqrt{y}\left(1-\sqrt{y}\right)}{\left(1-\sqrt{y}\right)}\)
\(P=\sqrt{x}\left(1+\sqrt{y}\right)-\sqrt{y}=\sqrt{x}-\sqrt{y}+\sqrt{xy}\)
b) Để P = 2 <=> \(\sqrt{x}-\sqrt{y}+\sqrt{xy}=2\) <=> \(\sqrt{x}+\sqrt{xy}=\sqrt{y}+2\)
<=> \(\left(\sqrt{x}+\sqrt{xy}\right)^2=\left(\sqrt{y}+2\right)^2\)
<=> \(x+xy+2x\sqrt{y}=y+4+4\sqrt{y}\)
<=> \(x+xy-y+\left(2x-4\right)\sqrt{y}=4\)(*)
P = 2 <=> (x; y) thỏa mãn (*)
Vì xyz=1\(\Rightarrow x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x\sqrt{x}\)
Tương tự \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2=\left(x+y\right)\ge2z\sqrt{z}\)
\(\Rightarrow P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)
Đặt \(x\sqrt{x}+2y\sqrt{y}=a;y\sqrt{y}+2z\sqrt{z}=b;z\sqrt{z}+2x\sqrt{x}=c\)
\(\Rightarrow x\sqrt{x}=\frac{4c+a-2b}{9};y\sqrt{y}=\frac{4a+b-2c}{9};z\sqrt{z}=\frac{4b+c-2a}{9}\)
\(\Rightarrow P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{a}+\frac{4b+c-2a}{b}\right)\)
\(=\frac{2}{9}\text{ }\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\ge\frac{2}{9}\left(4.3+2-6\right)=2\)
Min P =2 khi và chỉ khi a=b=c khi va chỉ khi x=y=z=1
Ta co: \(1+x^2=xy+yz+zx+x^2=\left(x+y\right)\left(x+z\right)\)
\(\Rightarrow\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}=\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}=y+z\)
Thê vào ta được
\(A=x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)=2\left(xy+yz+zx\right)=2\)
\(\left(x^3+y^3\right)\left(x+y\right)=xy\left(1-x\right)\left(1-y\right)\Leftrightarrow\left(\frac{x^2}{y}+\frac{y^2}{x}\right)\left(x+y\right)=\left(1-x\right)\left(1-y\right)\left(1\right)\)
Ta có : \(\left(\frac{x^2}{y}+\frac{y^2}{x}\right)\left(x+y\right)\ge4xy\)
và \(\left(1-x\right)\left(1-y\right)=1-\left(x+y\right)+xy\le1-2\sqrt{xy}+xy\)
\(\Rightarrow1-2\sqrt{xy}+xy\ge4xy\Leftrightarrow0\) <\(xy\le\frac{1}{9}\)
Dễ chứng minh : \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\le\frac{1}{1+xy};\left(x,y\in\left(0;1\right)\right)\)
\(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}\le\sqrt{2\left(\frac{1}{1+x^2}+\frac{1}{1+y^2}\right)}\le\sqrt{2\left(\frac{2}{1+xy}\right)}=\frac{2}{\sqrt{1+xy}}\)
\(3xy-\left(x^2+y^2\right)=xy-\left(x-y\right)^2\le xy\)
\(\Rightarrow P\le\frac{2}{\sqrt{1+xy}}+xy=\frac{2}{\sqrt{1+t}}+t\), \(\left(t=xy\right)\), (0<\(t\le\frac{1}{9}\)
Xét hàm số :
\(f\left(t\right)=\frac{2}{\sqrt{t+1}}+t\) , (0<\(t\le\frac{1}{9}\)
Ta có Max \(f\left(t\right)=f\left(\frac{1}{9}\right)=\frac{6\sqrt{10}}{10}+\frac{1}{9}\), \(t\in\left(0;\frac{1}{9}\right)\)ta có :
\(\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}=\frac{\left(xy+yz+xz+y^2\right)\left(xy+yz+xz+z^2\right)}{\left(xy+yz+xz+x^2\right)}=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(y+z\right)}{\left(x+z\right)\left(x+y\right)}=\left(y+z\right)^2\)
tương tự ta sẽ có :
\(A=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)=2\left(xy+yz+xz\right)=2\)
gt\(\Leftrightarrow\sqrt{xy}+\sqrt{x}+\sqrt{y}+1=9\Leftrightarrow\sqrt{xy}+\sqrt{x}+\sqrt{y}=8\)
Ta có:\(\sqrt{xy}\le\frac{x+y}{2}\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\)(đúng);
\(\sqrt{x}\le\frac{x+4}{4}\Leftrightarrow x-4\sqrt{x}+4\ge0\Leftrightarrow\left(\sqrt{x}-2\right)^2\ge0\)(đúng)
\(\sqrt{y}\le\frac{y+4}{4}\Leftrightarrow\left(\sqrt{y}-2\right)^2\ge0\)(đúng)
Cộng theo vế ba BĐT ta có:\(8\le\sqrt{xy}+\sqrt{x}+\sqrt{y}\le\frac{x+y}{2}+\frac{x+4}{4}+\frac{y+4}{4}=\frac{3\left(x+y\right)}{4}+2\)
\(\Leftrightarrow\frac{3}{4}\left(x+y\right)\ge6\Leftrightarrow x+y\ge8\)
Lại có:\(\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{y+x}=x+y\ge8\)
Nên GTNN của P là 8 đạt được khi \(x=y=4\)
Ta có: \(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\ge9\)
\(\Leftrightarrow\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge8\)
Theo bất đẳng thức CÔ-si:
\(8\le\sqrt{xy}+\sqrt{x}+\sqrt{y}\le\frac{x+y}{2}+\frac{x+4}{4}+\frac{y+4}{4}\)
\(\Rightarrow\frac{2x+2y+x+4+y+4}{4}=\frac{3x+3y+8}{4}=\frac{3\left(x+y\right)}{4}+\frac{8}{4}=\frac{3\left(x+y\right)}{4}+2\)
\(\Rightarrow\frac{3\left(x+y\right)}{4}+2\ge8\)
\(\Rightarrow\frac{3\left(x+y\right)}{4}\ge6\)
\(\Rightarrow x+y\ge8\)
Theo BĐT Cô si: \(\hept{\begin{cases}\frac{x^2}{y}+y\ge2x\\\frac{y^2}{x}+x\ge2y\end{cases}\Rightarrow\frac{x^2}{y}+y+\frac{y^2}{x}+x\ge2x+2y}\)
\(\Rightarrow P=\frac{x^2}{y}+\frac{y^2}{x}\ge x+y\ge8\)
Vậy Gía trị nhỏ nhất của P là 8 khi x = y = 4