cho tam giác ABC ,trên các cạnh AB và AC theo thứ tự lấy các điểm M và N sao cho AM=AN( M nằm giữa A và C) 1) CMR: Nếu AB=AC thì BN=CM
2) a. CM BN>CM
b. Gọi giao điểm của BN và CM là K. So sánh BK và CK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Nếu AB = AC:
Xét tam giác ABN và tam giác ACM có:
AN = AM (gt)
AB = AC (gt)
Góc A chung
\(\Rightarrow\Delta ABN=\Delta ACM\left(c-g-c\right)\)
\(\Rightarrow BN=CM\) (Hai cạnh tương ứng)
2.
a) Trên cạnh AB lấy điểm M' sao cho AM' = AC.
Ta có ngay \(\Delta AM'N=\Delta ACM\left(c-g-c\right)\)
\(\Rightarrow MC=NM'\)
Lại có AM' < AB nên NM' < NB
Vậy nên BN > CM
b) Ta thấy ngay MK > KN mà BN > MC nên BK = BN - KN > KC = MC - MK
Bài 2 :
1. Ta có : AB=AC <=> AM+MB=AN+NC
Mà AM=AN nên MB=MC
2. Kẻ BI vuông góc với MN và CE vuông góc với MN ( I và E thuộc đoạn MN kéo dài )
Xét hai tam giác vuông MBI và NCE có :
BM>CN ( do AB>AC )
=> IB>CE và IM>EN => IM+MN>EN+MN <=> NI>ME
Xét hai tam giác vuông IBN và ECM có : NI>ME và IB>CE => BN>CM
( vì hai cạnh góc vuông lớn hơn nên cạnh huyền cũng lớn hơn )
a: AM+MC=AC
NA+NB=AB
mà AB=AC; AM=AN
nên MC=NB
b: Xét ΔNBC và ΔMCB có
NB=MC
góc NBC=góc MCB
BC chung
=>ΔNBC=ΔMCB
=>góc OBC=góc OCB
=>ΔOBC cân tại O
a) Xét ΔBMC và ΔCNB có :
BM=CN ( AB=AC; AM=AN )
góc B = góc C ( ΔABC cân tại A )
BC : chung
suy ra : hai Δ trên bằng nhau theo trường hợp ( c-g-c )
suy ra : đpcm
b) chứng minh EBC cân nha em
Từ : ΔBMC = ΔCNB
suy ra : góc MCB = góc NBC ( 2 góc tương ứng )
suy ra : đpcm
c) ta có : ΔABC cân tại A
suy ra : góc B = góc C= \(\dfrac{180-A}{2}\) (1)
ta lại có : ΔAMN cân tại A
suy ra : góc AMN = góc ANM = \(\dfrac{180-A}{2}\) (2)
Từ (1) và (2) suy ra đpcm do (các góc ở vị trí đồng vị và bằng nhau )
a) Chứng minh CM=BN :AM = CN (gt)AC = BC ( cạnh tam giác đều)CAM^ = BCN^ = 60*=> Δ ACM = Δ CBN (c.g.c)=> CM = BN
b) Chứng minh góc BOC không đổi khi M và N di động trên hai cạnh AB và AC thỏa mãn AM=CNΔ ACM = Δ CBN => ACM^ = CBN^ => ABN^ = BCM^=> CBN^ + BCM^ = CBN^ + ABN^ = ABC^ = 60*=> BOC^ = 180* - (CBN^ + BCM^) = 180* - 60* = 120* không đổi