ngày THI ĐẤU OLM tối nay, ngày 28/04/2023 để so tài với học sinh toàn quốc!!!
Ôn tập kiểm tra học kì 2 hiệu quả, đạt thành tích cao!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác abc nội tiếp (o), gọi i là tâm đg tròn nội tiếp tam giác, AI cắt (o) tại D
a, BD=DC. b,tam giác BID cân
b/ Kéo dài BI cắt (O) tại E
Ta có \(B\widehat{I}D=\frac{1}{2}\left(\widebat{BD}+\widehat{AE}\right)\)( góc có đỉnh bên trong đường tròn (O))
Mà \(\widebat{BD}=\widebat{DC}\); \(\widebat{AE}=\widebat{EC}\)
Nên\(B\widehat{I}D=\frac{1}{2}\left(\widebat{DC}+\widebat{EC}\right)=\frac{1}{2}\widebat{ED}\)
Mặc khác \(D\widehat{B}I=\frac{1}{2}\widebat{ED}\)( tự CM nha )
=> \(B\widehat{I}D=D\widebat{B}I\)
=> tam giác BID cân
Sorry! Mik mới hok lớp 6
cho tam giác abc nội tiếp đường tròn (o), I là tâm đường tròn nội tiếp tam giác abc. AI cắt (o) tại M, c/m tam giác MIB cân
Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn (O). Gọi điểm I là tâm đường tròn nội tiếp tam giác ABC, tia AI cắt đường tròn (O) tại điểm M ( khác A)
a) cm các tam giác IMB và tam giác IMC là tam giác cân
b) Đường thẳng MO cắt đường tròn (O) tại điểm N (khác M) và cắt cạnh BC tại P. cm sinˆBAC/2=IP/IN
c) Gọi các diểm D,E làn lượt là hình chiếu của điểm I trên các cạnh AB,AC. Gọi các điểm H,K lần lượt đối xứng với D,E qua điểm I . Biết AB+AC=3BC. CM các điểm B,C,H,K cùng thuộc 1 đường tròn.
cho tam giác ABC nhọn (AB<AC), nội tiếp (O) và ngoại tiếp (I). D thuộc AC sao cho góc ABD = góc ACB. AI giao đường tròn ngoại tiếp tam giác DIC tại E và cắt (O) tại Q. Đường thẳng qua E // AB cắt BD tại P.
a)Chứng minh: tam giác QBI cân.
b)Chứng minh: BP.BI = BE.BQ
c)Gọi J là tâm đường tròn nội tiếp tam giác ABD. K là trung điểm của JE. Chứng minh: PK//JB
Cho tam giác ABC nội tiếp (O). Gọi I là tâm đường tròn nội tiếp tam giác ABC. AI cắt (O) tại P. Chứng mình rằng: PB=PC=PI
Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi I là tâm đường tròn nội tiếp tam giác ABC. AI cắt đường tâm O tại M. E là trung điểm của BC. ME cắt đường tròn tâm O tại N. Chứng minh góc BEI = góc ANI
cho tam giác ABC có 3 góc nhọn nội tiếp đg tròn tâm O kẻ các đg cao AF, CG của tam giác ABC (G thuộc AB, F thuộc BC) đg kính AD của đg tròn tâm O cắt BC tại E
1, chứng minh tứ giác AGFC nội tiếp 1 đg tròn 2, chứng minh EA.ED=EB.EC3, gọi K và I lần lượt là hình chiếu vuông góc của F trên các cạnh CG và AC đg thẳng IK cắt cạnh AB tại H chứng minh HF\(\perp\)AB
b) Đường thẳng MO cắt đường tròn (O) tại điểm N (khác M) và cắt cạnh BC tại P. cm \(\sin\frac{\widehat{BAC}}{2}=\frac{IP}{IN}\)
cho tam giác abc nội tiếp đường tròn (O), I là tâm đường tròn nội tiếp tam giác abc. AI cắt (O) tại M, MO cắt (o) tại N, cắt BC tại P, C/m sin 1/2 góc BAC=IP/IN
Học liệu này đang bị hạn chế, chỉ dành cho tài khoản VIP cá nhân, vui lòng nhấn vào đây để nâng cấp tài khoản.
b/ Kéo dài BI cắt (O) tại E
Ta có \(B\widehat{I}D=\frac{1}{2}\left(\widebat{BD}+\widehat{AE}\right)\)( góc có đỉnh bên trong đường tròn (O))
Mà \(\widebat{BD}=\widebat{DC}\); \(\widebat{AE}=\widebat{EC}\)
Nên\(B\widehat{I}D=\frac{1}{2}\left(\widebat{DC}+\widebat{EC}\right)=\frac{1}{2}\widebat{ED}\)
Mặc khác \(D\widehat{B}I=\frac{1}{2}\widebat{ED}\)( tự CM nha )
=> \(B\widehat{I}D=D\widebat{B}I\)
=> tam giác BID cân