K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2019

a, Vì 1 < x1 < x2 < 6 nên pt đã cho có 2 nghiệm dương phân biệt

Tức là \(\hept{\begin{cases}\Delta>0\\S>0\\P>0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(2m-3\right)^2-4m^2+12m>0\\2m-3>0\\m^2-3m>0\end{cases}}\)

                              \(\Leftrightarrow\hept{\begin{cases}4m^2-12m+9-4m^2+12m>0\\m>\frac{3}{2}\\m< 0\left(h\right)m>3\end{cases}}\)

                               \(\Leftrightarrow m>3\)

Có \(\Delta=9>0\)

Nên pt có 2 nghiệm phân biệt \(x_1=\frac{2m-3-3}{2}=m-3\)

                                                \(x_2=\frac{2m-3+3}{2}=m\)                        (Do m - 3 < m nên x1  < x2 thỏa mãn đề bài)

Vì \(1< x_1< x_2< 6\)

\(\Rightarrow\hept{\begin{cases}m-3>1\\m< 6\end{cases}}\)

\(\Leftrightarrow4< m< 6\)(Thỏa mãn)

c, C1_) Có \(x_1^2+x_2^2=\left(m-3\right)^2+m^2\)

                        \(=m^2-6m+9+m^2\)

                         \(=2m^2-6m+9\)

                         \(=2\left(m^2-3m+\frac{9}{4}\right)+\frac{9}{2}\)

                        \(=2\left(m-\frac{3}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow m=\frac{3}{2}\)

C2_) Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=2m-3\\x_1x_2=m^2-3m\end{cases}}\)

Có : \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

                     \(=\left(2m-3\right)^2-2m^2+6m\)

                     \(=4m^2-12m+9-2m^2+6m\)

                     \(=2m^2-6m+9\)

                       \(=2\left(m-\frac{3}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)

Dấu "=" khi \(m=\frac{3}{2}\)

27 tháng 5 2021

a) Thay x=-1 vào pt có:5+m=0 <=> m=-5

Thay m=-5 vào pt có:\(x^2-4x-5=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

Vậy nghiệm còn lại là 5

b) Để pt có hai nghiệm <=> \(\Delta\ge\) <=>\(16-4m\ge0\) <=>\(m\le4\)

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m\end{matrix}\right.\)

Có \(\left(3x_1+1\right)\left(3x_2+1\right)=4\)

\(\Leftrightarrow9x_1x_2+3\left(x_1+x_1\right)+1=4\)

\(\Leftrightarrow9m+3.4+1=4\)

\(\Leftrightarrow m=-1\) (thỏa)

Vậy m=-1

27 tháng 5 2021

a) `x=-1` là nghiệm `=> (-1)^2-4.(-1)+m=0 <=> m=-5`

`=>` PT: `x^2-4x-5=0 =>` Nghiệm còn lại là: `x=5`

b) PT có 2 nghiệm phân biệt `<=> \Delta'>0 <=> 2^2-m>0 <=> m < 4`

Viet: `x_1+x_2=4`

`x_1x_2=m`

Theo đề: `(3x_1+1)(3x_2+1)=4`

`<=> 3x_1x_2+3(x_1+x_2)+1=4`

`<=> 3m+3.4+1=4`

`<=> m=-9`

Vậy `m=-9`.

a) Thay m=-2 vào phương trình, ta được:

\(x^2+4x+3=0\)

a=1; b=4; c=3

Vì a-b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=-1;x_2=\dfrac{-c}{a}=-3\)

10 tháng 3 2017

Hóng

30 tháng 12 2019

PT : \(x^2-\left(2m-3\right)x+m^2-3m=0\)

a ) Làm tổng luôn ta chỉ cần thay m = 1 là xong

b ) \(\Delta_{\left(x\right)}=\left(2m-3\right)^2-4\left(m^2-3m\right)=4m^2-12m+9-4m^2+12m=9\)\(>0\forall m\in R\Rightarrowđpcm\)

c ) \(\hept{\begin{cases}x_1=m-3;x_2=m\\m>m-3\forall m\in R\\1< x_1< x_2< 6\end{cases}}\)  quay lại a ) m=1 \(\Rightarrow\hept{\begin{cases}x_1=-2\\x_2=1\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=1\\x_2=-2\end{cases}}\)

      \(4< m< 6\)

30 tháng 5 2016

\(\frac{3}{2}< m< \frac{9}{2}\)

30 tháng 5 2016

xin lỗi đánh nhầm  ta tìm được: 4  < m < 9         bạn nhé