tính bằng cách thuận tiện nhất:
a,\(\frac{3}{5}\)*\(\frac{8}{27}\)*\(\frac{5}{3}\)
b,\(\frac{7}{19}\)*\(\frac{1}{3}\)+\(\frac{7}{19}\)*\(\frac{2}{3}\)
ai đúng cho 2 tích
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\frac{3}{5}.\frac{5}{3}\right).\frac{8}{27}\)
= \(1.\frac{8}{27}\)
=\(\frac{8}{27}\)
b) \(\frac{7}{19}.\left(\frac{1}{3}.\frac{2}{3}\right)\)
= \(\frac{7}{19}.\frac{2}{9}\)
=\(\frac{14}{81}\)
Không biết có đúng không? Tick mình nha !
\(\frac{7}{19}\)x\(\frac{1}{3}\)+\(\frac{7}{19}\)x\(\frac{2}{3}\)=\(\frac{7}{19}\)x(\(\frac{1}{3}\)+\(\frac{2}{3}\))=\(\frac{7}{19}\)x1=\(\frac{7}{19}\)
\(\frac{7}{19}\)x \(\frac{1}{3}\)x \(\frac{7}{19}\)x \(\frac{2}{3}\)
= \(\frac{7}{19}\)x (\(\frac{1}{3}\)+ \(\frac{2}{3}\))
= \(\frac{7}{19}\)x 1
= \(\frac{7}{19}\)
Chúc bạn học tốt!
a, \(\frac{5}{11}\times\frac{7}{25}+\frac{15}{11}\times\frac{1}{5}\)
\(=\frac{5}{11}\times\frac{7}{25}+\frac{5}{11}\times\frac{3}{5}\)
\(=\frac{5}{11}\times\left(\frac{7}{25}+\frac{3}{5}\right)\)
\(=\frac{5}{11}\times\frac{22}{25}\)
\(=\frac{2}{5}\)
b, \(\frac{3}{7}\times\frac{25}{19}-\frac{1}{7}\times\frac{18}{19}\)
\(=\frac{1}{7}\times\frac{75}{19}-\frac{1}{7}\times\frac{18}{19}\)
\(=\frac{1}{7}\times\left(\frac{75}{19}-\frac{18}{19}\right)\)
\(=\frac{1}{7}\times3\)
\(=\frac{3}{7}\)
a ) \(5\frac{3}{4}:3+2\frac{1}{4}.\frac{1}{3}-\frac{3}{8}=\frac{23}{4}:\frac{3}{1}+\frac{9}{4}.\frac{1}{3}=\frac{23}{12}+\frac{3}{4}=\frac{8}{3}\)
b ) \(\frac{3}{5}:\frac{5}{6}:\frac{6}{7}:\frac{7}{8}+\frac{7}{8}+\frac{2}{5}+\frac{23}{35}=\frac{3.6.7.8}{5.5.6.7}+\frac{7}{8}+\frac{2}{5}+\frac{23}{35}=\frac{24}{25}+\frac{7}{8}+\frac{2}{5}+\frac{23}{35}=\frac{4049}{1400}\)
=7/9*[1/3+2/3]=7/9*1=7/9
a) \(\frac{3}{5}\times\frac{8}{27}\times\frac{5}{3}\)
\(=\left(\frac{3}{5}\times\frac{5}{3}\right)\times\frac{8}{27}\)
\(=1\times\frac{8}{27}\)
\(=\frac{8}{27}\)
b) \(\frac{7}{19}\times\frac{1}{3}+\frac{7}{19}\times\frac{2}{3}\)
\(=\frac{7}{19}\times\left(\frac{1}{3}+\frac{2}{3}\right)\)
\(=\frac{7}{19}\times1\)
\(=\frac{7}{19}\)