K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2019

\(\Leftrightarrow x^4\left(x-1\right)-4x^3\left(x-1\right)+4x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^4-4x^3+4x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[x^3\left(x-1\right)-3x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\right]\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^3-3x^2-3x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left(x^2-4x+1\right)=0\)

- Khi x - 1 = 0 thì x = 1

- Khi x + 1 = 0 thì x = -1

- Khi \(x^2-4x+1=0\Leftrightarrow\left(x-2\right)^2=3\Leftrightarrow\orbr{\begin{cases}x=\sqrt{3}+2\\x=-\sqrt{3}+2\end{cases}}\)

Pt có tậo nghiệm là: \(S=\left\{1;-1;\sqrt{3}+2;-\sqrt{3}+2\right\}\)

19 tháng 8 2017

c.

  1. Tập xác định của phương trình

  2. 2

    Lời giải bằng phương pháp phân tích thành nhân tử

  3. 3

    Sử dụng phép biến đổi sau

  4. 4

    Giải phương trình

  5. 5

    Đơn giản biểu thức

  6. 6

    Giải phương trình

  7. 7

    Đơn giản biểu thức

  8. 8

    Giải phương trình

  9. 9

    Giải phương trình

  10. 10

    Đơn giản biểu thức

  11. 11

    Giải phương trình

  12. 12

    Đơn giản biểu thức

  13. 13

    Lời giải thu được

19 tháng 8 2017

a,

  1. Tập xác định của phương trình

  2. 2

    Lời giải bằng phương pháp phân tích thành nhân tử

  3. 3

    Sử dụng phép biến đổi sau

  4. 4

    Giải phương trình

  5. 5

    Đơn giản biểu thức

  6. 6

    Giải phương trình

  7. 7

    Đơn giản biểu thức

  8. 8

    Giải phương trình

  9. 9

    Đơn giản biểu thức

  10. 10

    Lời giải thu được

25 tháng 8 2020

a) Ta có: \(\left(x+1\right)^4+\left(x-3\right)^4=0\)

Nhận thấy: \(\hept{\begin{cases}\left(x+1\right)^4\ge0\left(\forall x\right)\\\left(x-3\right)^4\ge0\left(\forall x\right)\end{cases}\Rightarrow}\left(x+1\right)^4+\left(x-3\right)^4\ge0\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^4=0\\\left(x-3\right)^4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\x=3\end{cases}}\) (mâu thuẫn)

=> pt vô nghiệm

b) \(x^4+2x^3-4x^2-5x-6=0\)

\(\Leftrightarrow\left(x^4-2x^3\right)+\left(4x^3-8x^2\right)+\left(4x^2-8x\right)+\left(3x-6\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+4x^2+4x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[\left(x^3+3x^2\right)+\left(x^2+3x\right)+\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)=0\)

Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(\forall x\right)\)

=> \(\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

25 tháng 8 2020

a,\(\left(x+1\right)^4+\left(x-3\right)^4=0\)

\(x^4-1+x^4-81=0\)

\(2x^4-82=0\)

\(2x^4=82\)

\(x^4=41\)

\(x=\sqrt[4]{41}\)

\(\Rightarrow\)vô nghiệm

25 tháng 2 2019

giai phuong trinh
1, (x-2)(x-1)(x-8)(x-4)=4x^2
2, (x^2+5x+6)(x^2+20x+96)=4x^2
3, 3(x^2+2x-1)^2-2(x^2+3x-1)^2+5x^2=0

16 tháng 4 2020

Hình như đề của bạn sai nên mình sửa lại nhé

x4 + 2x3 +5x2 +4x-12=0

⇔x4-x3+3x3-3x2+8x2-8x+12x-12=0

⇔x3(x-1)+3x2(x-1)+8x(x-1)+12(x-1)=0

⇔(x-1)(x3+3x2+8x+12)=0

⇔(x-1)(x+2)(x2+x+6)=0

ta có x2+x+6 >0 ∀x

\(\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy...

27 tháng 3 2020

Đề sai không bạn

=>x^4+4x^2+9-4x^3-6x^2+12x<x^4-4x^3-2x^2+15x-3

=>-2x^2+12x+9<-2x^2+15x-3

=>-3x<-12

=>x>4

Thiếu vế phải rồi bạn

19 tháng 6 2023

Sorry bn tai vua nay no bi loi