1) Tìm số nguyên n biết n^2-4n+7 là số chính phương.
2) Tìm các hằng số a và b sao cho đa thức : ax^3+bx^2+5x-22 chia hết cho đa thức x^2-x-2.
3) Tìm các số có 4 chữ số abcd sao cho 4.abcd ? dcba.
Cg giúp mk nha các bn. mk sẽ gửi bài tiếp.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Gọi f( x ) = 2n2 + n - 7
g( x ) = n - 2
Cho g( x ) = 0
\(\Leftrightarrow\)n - 2 = 0
\(\Rightarrow\)n = 2
\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7
\(\Rightarrow\)f( 2 ) = 3
Để f( x ) \(⋮\)g( x )
\(\Rightarrow\)n - 2 \(\in\)Ư( 3 ) = { \(\pm\)1 ; \(\pm\)3 }
Ta lập bảng :
n - 2 | 1 | - 1 | 3 | - 3 |
n | 3 | 1 | 5 | - 1 |
Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }
a) 2x-3=0 <=> x=\(\dfrac{3}{2}\) để \(\left(2x^2-ax+5\right):\left(2x-3\right)\) thì \(2x^2-ax+5=2\)
Thay x= \(\dfrac{3}{2}\) vào \(2x^2-ax+5\), ta được:
\(\dfrac{9}{2}-\dfrac{3}{2}a+5=2\)
<=> \(-\dfrac{3}{2}a=2-5-\dfrac{9}{2}\) <=>a=5
lười quá ~~
bài 1
vì đa thức bị chia bậc 2, đa thức chia bậc nhất
=> đa thức thương sẽ có dạng bx+c
theo đề ta có
\(2x^2-ax+5=\left(bx+c\right)\left(2x-3\right)+2\\ < =>2x^2-ax+5=2bx^2-3bx+2cx-3c+2\\ < =>2x^2-ax+5=2bx^2-x\left(2c-3b\right)-3c+2\\ < =>\left\{{}\begin{matrix}2x^2=2bx^2\\ax=x\left(2c-3b\right)\\5=2-3c\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}b=1\\c=-1\\a=2c-3b\end{matrix}\right.\\ =>a=2\left(-1\right)-3.1\\ =>a=-5\)
vậy a = -5
bài 2 ko hiểu sao mình ko làm được, chắc sai ở đâu đợi mình làm lại nhé
Ta có (x3 + ax2 + bx + 3) : (x2 - 2x - 1) = x + a - 2 dư x(b - 2a + 5) + a + 1
Để (x3 + ax2 + bx + 3) \(⋮\) (x2 - 2x - 1)
=> x(b - 2a + 5) + a + 1 = 0 \(\forall x\)
=> \(\hept{\begin{cases}b-2a+5=0\\a+1=0\end{cases}}\Rightarrow\hept{\begin{cases}b-2a=-5\\a=-1\end{cases}}\Rightarrow\hept{\begin{cases}b=-7\\a=-1\end{cases}}\)
\(x^2-3x+2\)
\(=x^2-2x-x+2\)
\(=x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(x-1\right)\)
Để \(f\left(x\right)=\left(x^4+ax^4+bx-1\right)⋮\left(x^2-3x+2\right)\)thì :
\(f\left(x\right)=\left(x^4+ax^4+bx-1\right)=\left(x^2-3x+2\right)\cdot Q\)
\(\Leftrightarrow x^4+ax^4+bx-1=\left(x-2\right)\left(x-1\right)\cdot Q\)
Vì đẳng thức trên đúng với mọi x, do đó :
+) Đặt x = 2 ta có pt :
\(2^4+a\cdot2^4+b\cdot2-1=\left(2-2\right)\left(2-1\right)\cdot Q\)
\(\Leftrightarrow16a+2b+15=0\)
\(\Leftrightarrow16a+2b=-15\)(1)
+) Đặt x = 1 ta có pt :
\(1^4+a\cdot1^4+b\cdot1-1=\left(1-2\right)\left(1-1\right)\cdot Q\)
\(\Leftrightarrow a+b=0\)
\(\Leftrightarrow a=-b\)(2)
Thay (2) vào (1) ta có :
\(16\cdot\left(-b\right)+2b=-15\)
\(\Leftrightarrow-14b=-15\)
\(\Leftrightarrow b=\frac{15}{14}\)
\(\Rightarrow a=\frac{-15}{14}\)
Vậy....
Bài 2:
=>ax^3-ax^2-2ax+(b+a)x^2-(b+a)x-2(b+a)+5x+(b+a+2a)x-22+2(b+a) chia hết cho x^2-x-2
=>b+3a+5=0 và b+a=0
=>3a+b=-5 và a+b=0
=>a=-5/2; b=5/2