K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2016

Ta có: 

A = k4 + 2k³ - 16k² - 2k + 15 

= k4 + 5k³ - 3k³ - 15k² - k² - 5k + 3k + 15 

= ( k³ - 3k² - k + 3 ).( k + 5) 

= (k² - 1).(k - 3).(k + 5) 

Để A ⁞ 16 

thì có nhiều trường hợp xảy ra. 

TH1: A = 0 <=> k = { ±1 ; 3 ; - 5} 

TH2: 

Với k là số lẻ thì (k² - 1 ) ⁞ 8 

cái này mình sẽ cm: 

k² - 1 = (k - 1).(k + 1) 

Với k là số lẻ thì k -1 và k + 1 là 2 số chẵn liên tiếp. Trong đó có 1 số chia hết cho 2 và 1 số chia 

hết cho 4 => (k - 1).(k + 1) ⁞ 8 

Đồng thời, với k lẻ thì k -1 hoặc k + 5 đều chia hết cho 2. 

=> Tích sẽ chia hết cho 8 x 2 = 16 

Vậy A ⁞ 16 <=> k là số lẻ. 

Dễ thấy, TH2 bao hàm TH1 => Ta kết luận k là số lẻ thì A ⁞ 16 

***Kiểm tra: 

Với k là số chẵn => (k² - 1) là số lẻ 

k - 3 là số lẻ 

k + 5 cũng là số lẻ 

=> A = (k² - 1).(k - 3).(k + 5) là số lẻ ko chia hết cho 16. 

27 tháng 8 2016

Ta có: 

N = k4+2k3-16k2-2k+15 

=k4+5k3-3k3-15k2-k2-5k+3k+15 

=(k3-3k2-k+3)(k+5) 

=(k2-1)(k-3)(k+5) 

Để \(N⋮16\) thì có nhiều trường hợp xảy ra. 

TH1:\(N=0\Leftrightarrow k=\left\{\pm1;3;-5\right\}\)

TH2:Với k lẻ \(\left(k^2-1\right)⋮8\)và cần cm

\(k^2-1=\left(k-1\right)\left(k+1\right)\)

Với k lẻ thì k-1 hoặc k+5 đều chia hết 2

=>N chia hết cho 8*2=16

Vậy \(A⋮16\Leftrightarrow k\) lẻ

 

25 tháng 9 2021

\(a,\left(n+10\right)\left(n+15\right)\)

Với n lẻ \(\Rightarrow n=2k+1\left(k\in N\right)\)

\(\Rightarrow\left(n+10\right)\left(n+15\right)=\left(2k+11\right)\left(2k+16\right)=2\left(k+8\right)\left(2k+11\right)⋮2\)

Với n chẵn \(\Rightarrow n=2q\left(q\in N\right)\)

\(\Rightarrow\left(n+10\right)\left(n+15\right)=\left(2q+10\right)\left(2q+15\right)=2\left(q+5\right)\left(2q+15\right)⋮2\)

Suy ra đpcm

\(b,\) Với n chẵn \(\Rightarrow n=2k\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)

Với n lẻ \(\Rightarrow n=2q+1\Rightarrow n+1=2q+2=2\left(q+1\right)⋮2\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)

Vậy \(n\left(n+1\right)\left(2n+1\right)⋮2\)

Với \(n=3k\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)

Với \(n=3k+1\Rightarrow2n+1=6k+3=3\left(2k+1\right)⋮3\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)

Với \(n=3k+2\Rightarrow n+1=3\left(k+1\right)⋮3\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)

Vậy \(n\left(n+1\right)\left(2n+1\right)⋮3\)

Suy ra đpcm

 

14 tháng 8 2017

bài cô Nguyệt