K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2020

Vì 0 ≤ a ≤ b + 1 ≤ c + 2 nên ta có a + b+c ≤ (c+2)+ (c+2) + c
<=> 1 ≤ 3c+ 4 <=> -3 ≤ 3c <=> -1≤ c
Dấu bằng xảy ra <=> a+b+c=1 và a = b +1 =c+2 <=> a = 1, b = 0, c = -1
KL: Gía trị nhỏ nhất của c = -1

23 tháng 2 2020

Vì 0 ≤ a ≤ b + 1 ≤ c + 2 nên ta có a + b+c ≤ (c+2)+ (c+2) + c
<=> 1 ≤ 3c+ 4 <=> -3 ≤ 3c <=> -1≤ c
Dấu bằng xảy ra <=> a+b+c=1 và a = b +1 =c+2 <=> a = 1, b = 0, c = -1
KL: Gía trị nhỏ nhất của c = -1

28 tháng 1 2019

Vì 0 ≤ a ≤ b + 1 ≤ c + 2 nên ta có a + b + c ≤ (c+2)+ (c+2) + c
\(\Leftrightarrow\) 1 ≤ 3c+ 4 \(\Leftrightarrow\) -3 ≤ 3c \(\Leftrightarrow\) -1≤ c
Dấu bằng xảy ra \(\Leftrightarrow\) a+b+c=1 và a = b +1 =c+2   \(\Leftrightarrow\) a = 1, b = 0, c = -1
KL: Gía trị nhỏ nhất của c = -1

27 tháng 3 2016

GIANG ƠI ! GIÚP MÌNH ĐI

15 tháng 2 2019

Ta có : 0 ≤ a ≤ b + 1 ≤ c + 2 

=> a + b + 1 + c + 2 ≤ 3( c + 2 )

=> a + b + c + 3 ≤ 3c + 6

=> a + b + c ≤ 3c + 3

vì a + b + c = 1  => 3c + 3 ≥ 1 => 3c ≥ - 2 <=> c ≥  \(-\frac{2}{3}\)

Để c đạt giá trị nhỏ nhất <=> c = \(-\frac{2}{3}\)

=> a + b = \(1-\left(-\frac{2}{3}\right)\)\(\frac{5}{3}\)

Ta lại có: 0 ≤ a ≤ b + 1

=> a + b ≤ 2b + 1

=> \(\frac{5}{3}\)≤ 2b + 1       

=> 2b ≥ \(\frac{2}{3}\)   => b ≥ \(\frac{1}{3}\)

mà b + 1 ≤ c + 2  => b ≤ \(-\frac{2}{3}+1\)   => b ≤ \(\frac{1}{3}\)

=> b = \(\frac{1}{3}\)

mà a + b = \(\frac{5}{3}\)   => a = \(\frac{4}{3}\)

Vậy GTNN c = \(-\frac{2}{3}\) <=> a = \(\frac{4}{3}\); b\(=\frac{1}{3}\)

27 tháng 1 2019

Trả lời giúp mình với . Thanks.

7 tháng 2 2019

đề là J bạn ghi rõ vào tớ ko thấy :(((

7 tháng 2 2019

Vì 0 ≤ a ≤ b + 1 ≤ c + 2 nên ta có a + b+c ≤ (c+2)+ (c+2) + c
<=> 1 ≤ 3c+ 4 <=> -3 ≤ 3c <=> -1≤ c
Dấu bằng xảy ra <=> a+b+c=1 và a = b +1 =c+2 <=> a = 1, b = 0, c = -1
KL: Gía trị nhỏ nhất của c = -1

20 tháng 2 2017

xcnhbhjdfb chjb

jckxb nxcnmrehjvsbn

cbjdbfvcm bjkdfbgfmjn

20 tháng 2 2017

ban biet giai ko

Sai đề rồi nha bạn, viết lại đi

26 tháng 1 2019

Cho ba số a, b, c thỏa mãn 0≤a≤b+1≤c+2

và a+b+c=1

Tính giá trị nhỏ nhất của c